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Project Summary

The theory of NPCompleteness has shown that several naturally occurring problems are unlikely to have
polynomial time algorithms. One approach to overcome this fundamental intractability for optimization
problems has been to shift the focus from exact solutions to obtaining approximate solutions. The study
of approximation algorithms has thus emerged as a rich and exciting field and recent advances have led
to good approximation algorithms for several fundamental optimization problems. Despite these develop-
ments, several interesting and difficult open problems remain. A primary focus of this career development
plan is studying the approximability of fundamental problems and attempting to close such gaps in our
understanding.

The broad goals of this career development plan are the following:

• Developing new tools to devise approximation algorithms for problems on directed graphs.

• Developing new techniques for metric approximations and embeddings as building blocks for approx-
imation.

• Investigating a systematic way to obtain and exploit strengthened SDPs as well as the use of strength-
ened SDPs for graph partitioning minimization problmes and ordering problems.

• Devise techniques to deal with scheduling problems with precedence constraints.

• Extend the machinery of approximation algorithms to new settings such as information theoretic and
algebraic problems.

• Involve students at all levels of the research, from undergraduate projects on understanding the quality
of LP and SDP relaxations through computational experiments, to the mathematical research suitable
for Ph.D. students.

• Develop courses to convey core algorithmic ideas to students outside the theory community, as well
as expose theory students to new developments and research issues through advanced courses.

Broader Impacts. The proposed research will attempt to provide new tools and techniques for designing
approximation algorithms and enhance our understanding of the approximability of fundamental problems
as well as the limitations of our current algorithmic toolkit. The educational component will develop new
courses geared towards disseminating new algorithmic ideas outside the theoretical computer science com-
munity; the techniques developed in the latest research will be distilled into new graduate and undergraduate
courses. Course materials developed for such new courses will be made freely available to enable similar
courses to be taught elsewhere.
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1 Introduction

Advances in technology and the demand for efficient algorithmic solutions to problems that arise in appli-
cation domains continually pose new challenges for computer scientists. The theory of NPCompleteness
has shown that several naturally occurring problems are unlikely to have polynomial time algorithms. One
approach to overcome this fundamental intractability for optimization problems has been to shift the focus
from exact solutions to obtaining approximate solutions. The study of approximation algorithms has thus
emerged as a rich and exciting field and recent advances have led to good approximation algorithms for
several fundamental optimization problems. Despite these developments, several interesting and difficult
open problems remain. A primary focus of this career development plan is studying the approximability of
fundamental problems and attempting to close such gaps in our understanding.

An optimization problem consists of a mapping of problem instances to a set of a feasible solutions and
an objective function that assigns a value to every feasible solution. The goal is to find a solution that
minimizes or maximizes the value of the objective function. For an algorithm A and instance I , let A(I)
denote the value of the objective function for the solution produced by A on instance I , and let OPT (I)
denote the value of the optimal solution for the instance. The quality of the approximation algorithm A

is measured by its approximation ratio, which is defined as the worst case ratio A(I)
OPT (I) , over all instances

I . For minimization problems, the approximation ratio is ≥ 1, obtained by maximizing this ratio over all
instances I . For maximization problems, the approximation ratio is ≤ 1, obtained by minimizing this ratio
over all instances I . (In the remainder of this section, approximation ratios are stated for minimization
problems, unless otherwise specified). The NP-Hardness of an optimization problem implies that unless
P = NP , we cannot achieve an approximation ratio of 1 in polynomial time. For certain problems, it is
possible to achieve a 1 + ε approximation in polynomial time for any fixed ε > 0. Such an algorithm is
called a polynomial time approximation scheme (PTAS).

Research in the last two decades has led to great progress in our understanding of many central ques-
tions in optimization. This period has seen the emergence of various algorithmic paradigms for the design
of approximation algorithms: the use of linear programming (LP) relaxations and randomized rounding,
the primal-dual method, the use of semidefinite programming (SDP) relaxations and the use of metric em-
beddings [LLR95]. In the last 5 years, new techniques have emerged: the use of dynamic programming
and structured decomposition theorems to obtain PTASes for geometric problems [Aro98], metric approx-
imations [Bar98], iterative rounding [Jain01], sophisticated dynamic programming approaches to obtain
PTASes for scheduling problems [ABC+99], lagrangian relaxation [JV99], and a renewed interest in local
search and greedy algorithms [AGK+01].

The connections discovered between the theory of probabilistically checkable proofs and the hardness of
approximation for optimization problems have given us techniques to prove lower bounds on the approx-
imability of several problems. It is now standard to show that an optimization problem is MAX-SNP-hard,
thus proving that it is hard to approximate beyond a certain constant.

Despite these advances, there are significant gaps in our understanding of the approximability of funda-
mental optimization problems and we still lack general tools and techniques for broad classes of problems.
The primaldual framework, though immensely successful for undirected connectivity problems, has had
mostly failure with directed problems and there is little understanding about why this happens. The directed
variants of several basic optimization problems such as Steiner tree, TSP and k-center are far less under-
stood than their undirected counterparts; there are huge gaps between the known upper and lower bounds
for these problems. SDP relaxations have proved to be a powerful tool for approximation; however, for
several basic graph partitioning minimization problems such as multicut and sparsest cut as well as vertex
ordering problems such as max acyclic subgraph, we have not managed to harness the power of SDPs de-
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spite the knowledge of promising relaxations for these problems. In fact for these problems, any techniques
that improve the state of the art would be a breakthrough. Another broad class of problems not very well
understood is the class of scheduling problems with precedence constraints; the lack of techniques to deal
with precedence constraints could be linked to the lack of general decomposition techniques for directed
graphs.

With this in mind, the broad goals of this career development plan are the following:

1. Developing new tools to devise approximation algorithms for problems on directed graphs.

2. Developing new techniques for metric approximations and embeddings as building blocks for approx-
imation.

3. Investigating a systematic way to obtain and exploit strengthened SDPs as well as the use of strength-
ened SDPs for graph partitioning minimization problmes and ordering problems.

4. Devise techniques to deal with scheduling problems with precedence constraints.

5. Extend the machinery of approximation algorithms to new settings such as information theoretic and
algebraic problems.

6. Involve students at all levels of the research, from undergraduate projects on understanding the quality
of LP and SDP relaxations through computational experiments, to the mathematical research suitable
for Ph.D. students.

7. Develop courses to convey core algorithmic ideas to students outside the theory community, as well
as expose theory students to new developments and research issues through advanced courses.

Broader Impacts. The proposed research will provide new tools and techniques for designing approxi-
mation algorithms and enhance our understanding of the approximability of fundamental problems as well
as the limitations of our current algorithmic toolkit. The educational component will develop new courses
geared towards disseminating new algorithmic ideas outside the theoretical computer science community;
the techniques developed in the latest research will be distilled into new graduate and undergraduate courses.
Course materials developed for such new courses will be made freely available to enable similar courses to
be taught elsewhere.
Institutional Context. Princeton University is an excellent place to pursue the career development and
teaching program described in this proposal. The department has an extremely strong theory group. I expect
to collaborate with several colleagues in the department. In particular, I expect to collaborate with Sanjeev
Arora, on problems related to hardness of approximation and analyzing LP and SDP based approximation
algorithms. I also expect to collaborate with Paul Seymour, in the Math department, on problems related
to analyzing LP relaxations for optimization problems on directed graphs. I will also benefit from having
algorithms experts Bob Tarjan and Bernard Chazelle as colleagues and I expect to work with them in the
coming years. I have collaborated with Amit Sahai in the past, and I expect to continue working with him
on problems related to embeddings and information theoretic notions of network capacity.

Princeton is very supportive of my career development plan. The university has given me a generous start-
up package that has allowed me to recruit and support two students in my first year. In addition, Princeton
has also given me great freedom in terms of teaching which I have used to design and teach two new courses
in my first year.

The budget for this proposal includes one month of summer support and funds to support a graduate
student over a five year period. This will support some, but not all the activities of my research group. As
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mentioned before, I have two students working with me already and I expect to recruit more students in
the coming years. One of my current students (Tony Wirth) is working full time on some of the problems
outlined in this proposal.

2 Proposed Research

Below we give examples of specific problems we hope to make progress on and outline our approaches for
attacking them. We stress that this is not intended to be a comprehensive list of everything we will do in the
course of this work. As with any good research, we hope that new discoveries will take us in unexpected
directions.

2.1 Optimization Problems on Directed Graphs

Optimization problems on directed graphs have proved to be much harder than their undirected counterparts.
For many interesting problems, there are large gaps between the known upper and lower bounds for the
approximability of optimization problems on directed graphs. I illustrate this by discussing three such
problems I intend to study. Another very interesting problem here is the minimum directed multicut problem,
for which Cheriyan, Karloff and Rabani [CKR01] recently gave the first non-trivial approximation. Much
remains to be done in understanding this problem; we omit a discussion due to space constraints.

Asymmetric (directed) k-center
Given a weighted directed graph, the goal is to choose k centers, and assign vertices to centers so as

to minimize the maximum distance of a vertex from its assigned center. Here distance is measured as the
directed distance from a center to a vertex.

In the undirected setting, the problem is approximable to a factor of 2 [HS86, Gon85] which is tight.
Panigrahy and Vishwanathan [PV98] gave an O(log∗n) approximation algorithm for this problem. This
was improved slightly by Archer [Arc01], who obtained an O(log∗k) approximation.

Recently, I have been studying a natural LP relaxation for this problem (also used in [Arc01]) , in collab-
oration with Howard Karloff (AT&T Research), Inge Li Goertze (PhD student, U. Copenhagen), and Tony
Wirth (PhD student, Princeton). Without loss of generality, we can think of the input as an unweighted
directed graph where the optimal solution covers all vertices with k centers within a distance of 1. The LP
has the constraint ∀j

∑
(i,j)∈E yi ≥ 1, and the objective is to minimize

∑
i yi. The basic question here is

that if the LP produces a solution with at most k fractional centers that covers all points (within radius 1),
can we choose k centers that cover all points within a constant distance, i.e. is the radius gap of the LP a
constant ? It turns out that the radius gap of the LP formulation is at most O(log∗ k).

We have managed to reduce this problem to a combinatorial question which I believe we should be able
to resolve. The question is the following: Supose we have a layered graph with ni vertices in layer i and
edges directed from layer i to layer i + 1. Further, each vertex in layer i + 1 has edges from at least 1/k
fraction of the vertices in layer i. For any such graph with ` layers, is it possible to choose a set S of O(k)
vertices in layer 1 such that each vertex in the last layer has a directed path to it from some vertex in S. I
conjecture that this is true for any such layered graph with more than a certain constant number of layers (in
fact, I think 4 layers suffice). If true, it would imply that the LP has a constant radius gap.

Directed Steiner tree
Given a weighted directed graph, a root r and a set of terminals S, the goal is to construct a tree rooted

at r which spans all the vertices in S such that there is a directed path from the root r to every vertex in S.
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The objective is to find such a Steiner tree so as to minimize the sum of the weights of the edges in the tree.1

The best known result for this problem is an algorithm that was presented in co-authored work [CCC+99],
which yields an O(nε) approximation in O(n1/ε) time and an O(log3 n) approximation in nO(logn) time.
The question of designing a polylogarithmic approximation algorithm that runs in polynomial time is a very
interesting open problem.

An important fact used in [CCC+99] is that the optimal Steiner tree can be approximated by an ` level
tree within a factor of n1/`. The algorithm constructs a tree of depth ` by piecing together trees of depth `−1
constructed recursively. Roughly speaking, the running time of this algorithm is n`. The polylogarithmic
approximation is obtained by setting ` = log n, i.e. finding a good approximation to the best O(log n) level
Steiner tree. The goal would be to achieve this approximation bound in polynomial time.

There are two possible approaches we plan to pursue for this problem.

1. Perhaps it is possible to modify the greedy algorithm so that it searches fewer possibilities and hence
runs in polynomial time. I/ndeed such an approach was used by Chekuri, Even and Kortsarz [CEK02]
for a different problem: the group Steiner tree problem. Here they used geometric bucketing and other
techniques to obtain a combinatorial greedy algorithm for the group Steiner tree problem.

2. Another possible approach is to consider an LP relaxation for this problem. This was the approach
taken by Zosin and Khuller [ZK02]. They point out a possible problem with this approach for a natural
LP relaxation and provide an example where the LP gap is O(

√
k). However, in their example, k is

polylogarithmic in n, so this does not rule out an approximation ratio that is polylogarithmic in n,
based on the LP. Nevertheless, the example suggests that the LP solution conveys very litle information
and one may need to work with a strengthening of this natural LP in order to obtain an upper bound.

Asymmetric TSP
Given a weighted directed graph, the problem is to construct a directed tour that spans all the vertice, so

as to minmize the total weight of all the edges in the tour. The best known algorithm for this problem, due
to Frieze, Galbiati and Maffioli [FGM82], achieves an O(log n) approximation. The best lower bound is
117/116, by Papadimitriou and Vempala [PV00]. Determining whether this problem has a constant factor
approximation has been an intriguing problem that has received some attention.

For the symmetric case, the 3/2-approximation algorithm of Christofides [Chr76] is the best known. The
well-known Held-Karp conjecture says that the value of a certain LP relaxation of Held and Karp [HK70] is
within a factor of 4/3 of the optimal traveling salesman tour. This conjecture has been a subject of intense
study in the past decade.

Carr and Vempala [CV00] studied a LP relaxation for the asymmetric TSP, which can be viewed as an
asymmetric generalization of the Held-Karp relaxation. They showed that a certain strengthening of the
Held-Karp conjecture, if true, would imply that the value of this relaxation is at most a factor of 4/3 away
from the optimal asymmetric travelling salesman tour. Achieving such an approximation ratio seems a far
cry from the current state of knowledge about this problem.

An interesting aspect of [CV00], from my point of view, is the fact that they identify the structure of
certain basic solutions for the asymmetric TSP LP relaxation, which they call fundamental extreme points
and ultra-fundamental extreme points. In [CV00], these are used to show the connection between the relax-
ations for the asymmetric and symmetric problems. It is precisely such fractional solutions that we need to
be able to round to integer solutions. In some sense these are the hardest solutions, but they also possess
considerable structure which may make dealing with them easier.

1This problem is hard to approximate within a factor of O(log n) since set cover can be reduced to it.
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2.2 Approximation of metric spaces and applications

Recently developed techniques to approximate metric spaces by simpler spaces that have found various
applications to the design of approximation algorithms. There are several interesting research issues here,
related to improving the general tools for approximation of metric spaces and improving the approximation
factors for specific problems that currently depend on these general tools and consequently have Ω(log n)
approximation factors.

Probabilistic approximation of metric spaces via tree metrics
Bartal [Bar96, Bar98], introduced the notion of probabilistic approximation of metric spaces via tree

metrics.2 Several optimization problems on metric spaces are easier to solve when the input is restricted to
a tree metric. This technique allows such solutions to be translated to the general metric case with a loss of
O(log n log log n).

One interesting question is whether the factor of O(log n log logn) can be improved. There is a lower
bound of Ω(log n) on this factor. It turns out that the log n log logn term comes about from an application
of Seymour’s graph partitioning and recursion analysis [Sey95]. This in turn is the basis for several divide
and conquer algorithms based on the spreading metric approach [ENRS00], which have approximation
factors of O(log n log log n). Thus making an improvement on the approximation factor for probabilistic
approximation of metric spaces could potentially lead to improvements in these other algorithms as well.
A second issue is whether better approximation factors can be achieved by allowing more complicated
structures than trees. e.g. there are several problems that can be solved on graphs of constant treewidth by
dynamic programming. How well can general metric spaces be approximated by such constant treewidth
graphs ?

Below we describe two interesting problems for which the best known algorithms use this approximation
machinery. Another such interesting problem (whose discussion we omit) is minsum clustering (See [Ind99,
BCR01, DKKR02, GI02]).

Buy at Bulk network design
This problem [SCRS97] models economy of scale in the cost of network connections. Given a concave

cost function for links (here the cost per unit length is a concave function of capacity), the goal is to design
a minimum cost network by installing/buying capacity on the links of a given graph so as to satisfy a set of
given demands. In general the demands are specified by source-sink pairs si, ti and demand di. The network
constructed should be able to route a flow of value di between si and ti simultaneously for all i.

Awerbuch and Azar [AA97] gave anO(log n log log n) approximation based on Bartal’s technique [Bar96,
Bar98]. Guha, Munagala and Meyerson [GMM01] gave the first constant factor approximation for the single
source case. This was simplified and improved recently by Talwar [Tal02].

For the general case, i.e. multiple source sink pairs, the technique based on probabilistic approximation
of metric spaces via trees is the only method we know of, but we have no lower bound that rules out a
constant factor approximation. A natural place to look for good lower bounds on the optimal solution is to
use a suitable LP relaxation. However, obtaining a good LP relaxation for the problem seems tricky because
of the concave costs. In the single source case, [GMM01, Tal02] show how to overcome this difficulty.
Perhaps their ideas can be combined with new techniques to obtain such LP relaxations for the general case.

Classification with pairwise relationships
2The idea is to approximate a metric space by a probability distribution over tree metrics. For any pair of vertices, the distance

in each tree metric is greater than the distance in the original metric. Further, the expected distance in the tree metric is at most an
O(log n log log n) factor more than the distance in the original metric.
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This problem was introduced by Kleinberg and Tardos [KT99], motivated by problems in image recon-
struction and vision. It can be viewed as a generalization of the multiway cut problem. We are given a graph
and the objective is to assign one of k labels to each vertex. There is a metric specified on the labels. We
are given assignment costs for every vertex label pair. Further, if the labels of two adjacent vertices differ,
we must also pay a separation cost which is equal to the weight of the edge times the distance between the
labels. The objective is to come up with an assignment of labels that minimizes the sum of the assignment
and separation costs.

[KT99] obtained an O(log k log log k) approximation for this problem using Bartal’s techniques [Bar96,
Bar98]. Calinescu, Karloff and Rabani [CKR01] considered a special case, called 0-extension where the
assignment costs are zero and k vertices are preassigned each of the k labels; they achieved an O(log k)
approximation. Chekuri, Khanna, Naor and Zosin [CKNZ01] studied a natural LP relaxation for the problem
of [KT99] and obtained some improved results for special metrics. We do not know of super constant gap
examples for this LP relaxation, and this seems like a promising starting point for better approximations.

In recent work [Cha02b], I showed that the analysis of this LP relaxation is interesting beyond designing
an approximation algorithm for the problem of classification with pairwise relationships. Briefly, rounding
algorithms for this LP relaxation can be viewed as sketching algorithms for a certain distance measure
on distributions, called the Earth Mover Distance (EMD).3 It turns out that rounding schemes for the LP
relaxation can be viewed as similarity preserving hashing schemes that map distributions to a compact
representation so that an estimate of the EMD between two distributions can be made from their compact
representations. Further, the quality of the approximation here is exactly the approximation factor obtained
from the analysis of the LP relaxation.

2.3 Semidefinite relaxations

In a seminal paper, Goemans and Williamson [GW95] introduced semidefinite programming (SDP) relax-
ations as a tool for obtaining approximation algorithms. They applied semidefinite programming to get
an approximation ratio of roughly 0.878 for the MAX CUT problem. Since then, semidefinite program-
ming has been used to obtain approximation algorithms for several problems, including graph-coloring and
constraint satisfaction problems.

In this section, we describe several problems for which we feel a better understanding of the power of
SDP relaxations is required. Other than classical optimization problems such as coloring and vertex cover,
there are two broad classes of problems for which improved rounding algorithms for SDP solutions can
potentially make substantial improvements to the state of the art: graph partitioning minimization problems
and vertex ordering problems.

2.3.1 Stronger SDP relaxations

In this section, I discuss SDP based techniques for the classical optimization problems of graph coloring
and vertex cover and a general way to obtain a sequence of strengthened SDP relaxations which I hope will
be useful for these and other problems.

3-coloring
Feige and Kilian [FK98] showed that it is hard to approximate the chromatic number within ratio n1−ε

for any ε > 0 unless NP = ZPP . However we know relatively little about how well graph coloring can
3This is used in vision applications [RGT97, RT98, RTG98a, RTG98b, Rub99, CG97a, CG97b, RT99a, RT99b], where images

are represented as distributions over points in a metric space and EMD is used to compute the distance between these distributions.
Roughly speaking, the EMD between two distributions is the min cost transportation that transforms one distribution to the other.
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be approximated for graphs with a constant chromatic number. In particular the following question has
received a lot of attention: how many colors do we need to color a 3-colorable graph in polynomial time ?

Karger, Motwani and Sudan [KMS98] used semidefinite programming and obtained Õ(n1− 3
k+1 )-colorings

for k-colorable graphs, improving on the results of Blum [Blu94]. The result of [KMS98] was subse-
quently improved by Blum and Karger [BK97] for 3-colorable graphs, and by Halperin, Nathaniel and
Zwick [HNZ01] for k-colorable graphs with k > 3.

On the algorithmic side, the current best known algorithm for coloring 3-colorable graphs needs Õ(n3/14)
colors [BK97]. However, on the hardness side, the only hardness result we know is that it is NP-Hard to
4-color a 3-colorable graph (see Khanna, Linial and Safra [KLS00] as well as Guruswami and Khanna
[GK00]) Khot [Kho01] showed recently that a for a sufficiently large constant k, a k colorable graph cannot
be colored using kO(log k) colors.

An interesting question is whether we can achieve an approximation ratio of no(1) for 3-coloring. Re-
cently, I showed [Cha02a] that such a result cannot be achieved using certain strengthened versions of the
SDP relaxations used by Karger, Motwani and Sudan [KMS98].

Very recently, Feige, Langberg and Schechtman [FLS02] demonstrated that the analysis of [KMS98] is
almost tight, i.e. it is not possible to improve on the rounding procedure they use for the particular SDP they
consider. (Note that to make improvements, [BK97] and [HNZ01] use combinatorial bounds in addition to
the bound provided by the SDP). Interestingly, the techniques of [FLS02] use and build on the ideas in the
geometric construction of the earlier paper [FS01] on SDPs for MAX-CUT.4 It would be interesting to see
whether such ideas can be used to demonstrate tightness of rounding procedures for other SDPs as well.

The techniques of [FLS02] do not extend to the strengthened SDP relaxations considered in [Cha02a].
New rounding techniques will be needed to demonstrate that these strengthened relaxations are strictly
better than those considered in [KMS98]; however they cannot achieve an no(1) approximation. I intend to
investigate whether other, stronger SDP relaxations will lead to such a result.

Vertex Cover
Given a graph, G(V,E), the goal is to pick the smallest posible subset S of vertices so that every edge is

adjacent to at least one vertex in S. One can also consider the variant where vertices have weights associated
with them and the goal is to find the vertex cover of minimum total weight.

The best known algorithms for this problem achieve an approximation factor of 2 − o(1).5 Obtaining a
2− ε approximation factor is an open problem that has intrigued researchers for a long time. Håstad showed
that vertex cover is hard to approximate within a factor of 7/6. Recently, Dinur and Safra [DS02] obtained
a stronger lower bound of approximately 1.36.

Figuring out whether we can beat the 2 barrier for vertex cover is a fascinating question that I intend to
investigate. As a first step, I want to understand whether SDP relaxations with additional constraints can
achieve a factor better than 2. Kleinberg and Goemans [GK98] showed that a certain SDP relaxation does
not give an approximation better than 2 − ε for any ε > 0, and in [Cha02a], I showed that for a stronger
relaxation, the gap approaches 2 as well. Very recently, Arora, Bollobas and Lovasz [ABL02] showed that
for a very general class of LP relaxations (even in cases where we do know the LP explicitly), the gap for

4The basic approach here is to construct a graph that comes equipped with a vector solution for the SDP; in fact the vector
solution is chosen first and the graph is constructed based on it. In most cases, the SDP solution corresponds to an embedding of the
graph on the unit sphere with certain constraints. The approach is to start with a dense collection of points on the sphere and build
the graph by putting in all edges so that the constraints required of the SDP solution are met. A considerable amount of technical
machinery is required to prove the required properties of the graphs constructed thus for the MAX-CUT and k-coloring relaxations.

5An approximation factor of 2− log log n
2 log n

was achieved by Monien and Speckenmeyer [MS85] and Bar-Yehuda and Even [BE85].
Halperin [Hal00] improved the factor slightly to 2− 2 ln ln n

ln n
(1− o(1)).
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vertex cover is 2− ε for arbitrarily small ε. I intend to investigate whether an analogous result can be shown
for SDP relaxations as well.

Systematic construction of strengthened SDPs
We describe a systematic way of writing down a sequence of progressively stronger SDPs for various

optimization problems involving assigning discrete values to variables. We start with the basic SDP formu-
lation and then explain how it can be made stronger. The SDP formulation has a canonical unit vector v0.
All other vectors used in the SDP are vector analogues of {0, 1}-variables, each representing the probability
of a specific event. Any such vector v satisfies the constraint v · v0 = v · v, and this value is interpreted
as the probability of the underlying event. Further, the dot product of any two vectors is non-negative; this
value is interpreted as the probability of both events occuring simultaneously. For every variable x in the
optimization problem and possible assignment t to x, we have the vector v(x,t) (representing the event that
x is assigned the value t). The sum of the vectors v(x,t) over all possible values t is set to be v0, indicating
that x must be assigned exactly one value. If x1, t1 and x2, t2 are mutually exclusive assignments, then we
have the constraint v(x1,t1) · v(x2,t2) = 0.6

The optimization objective (if required) is expressed in terms of the dot products of these vectors (inter-
preted as probabilities). Using this kind of formulation, one can write down an SDP for graph coloring for
example. Though very different for the SDPs mentioned before, one can show that this is equivalent to the
strongest SDP in [Cha02a].7

Further, one can produce a sequence of successively stronger SDPs in the following way: We consider
sets of upto k assignments (x1, t1) . . . (xk, tk). For each such set S, we have a vector vS . These vectors
satisfy the previously mentioned constraints with v0, and vS1 · vS2 = 0 if S1 and S2 are contradictory
sets of assignments. Further, for a set S of assignments and x a variable not assigned by S, we have the
consistency constraint vS =

∑
t vS∪(x,t). Here S ∪ (x, t) denote the set of assignments in S together with

the new assignment (x, t). Such an SDP enforces that all valid constraints on k variables are satisfied.
As we increase k, we get a sequence of progressively stronger SDPs. This has close connections to the
lifting procedures proposed by Lovász and Schrijver [LS91] and other authors.8 I intend to investigate this
further and determine whether such strengthened relaxations can be used to derive improved approximations,
especially for graph coloring and vertex cover. In collaboration with David Williamson (IBM Almaden), I
am looking at such relaxations for multiway cut.

2.3.2 Graph Partitioning

We discuss a number of graph partitioning minimization problems where we know of promising SDP re-
laxations which could potentially be the basis for substantially improved approximations. The first two
problems, minimum multicut and sparsest cut, are particularly interesting since algorithms to solve these
problems are used as subroutines in solving a host of other problems, usually in divide and conquer ap-
proaches. Making an improvement for these problems is likely to result in improvements for a variety of
other optimization problems as well.

Minimum multicut
Given an undirected graph G(V,E) and k pairs of vertices (s1, t1), . . . (sk, tk), a multicut is a subset

F ⊆ E of edges such that if all the edges in F are removed, then none of the pairs (si, ti), i = 1 . . . k are in

6e.g. this happens if x1 = x2 and t1 6= t2, or if the two assignments are prohibited due to the problem constraints.
7Such SDPs have been used by other authors; see Khot [Kho02].
8See the article by Laurent [Lau01] for a comparison of various lifting procedures; also see Goemans and Tuncel [GT00b].
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the same connected component in the remaining graphG′ = (V,E−F ), In the minimum multicut problem,
we are also given a non-negative cost c(e) associated with each edge e ∈ E and we wish to find the multicut
of minimum total cost.

The best known algorithm for this problem is due to Garg, Vazirani and Yannakakis [GVY96], which
achieves an O(log k) approximation. The algorithm uses an LP relaxation that assigns a length function
`(e) ∈ [0, 1] to each edge e ∈ E.9 The constraint is that the distance from si to ti under this length function
is at least 1.10 [GVY96] show that a fractional solution to this LP relaxation can be rounded to an integral
multicut with value at most O(log k) times the value of the fractional multicut. Such LP relaxations that
assign length functions are useful for other graph partitioning problems as well and the region growing
technique of [GVY96] has found applications beyond the minimum multicut problem.

One can also write an SDP relaxation for the minimum multicut problem. Here, we have a unit vector xv
corresponding to each vertex v ∈ V . The SDP measures the extent to which a pair of vertices u and v are
separated by the squared norm of (xu − xv)/2. Note that this is 0 if xu = xv and 1 if xu = −xv. For every
pair (si, ti), we have the constraint that xsi = −xti .11 Now if we consider any hyperplane through the origin
then the edges whose endpoints are on opposite sides of the hyperplane form a valid multicut since xsi and
xti must be on opposite sides of the hyperplane (excluding degenerate cases). However, simply taking the
multicut produced by a random hyperplane does not yield a good approximation. Consider vertices u, v
with corresponding vectors xu, xv that subtend a very small angle θ. Then xu and xv are on opposite sides
of a random hyperplane with probability proportional to θ; however the contribution of the pair (u, v) to the
objective function of the SDP is O(θ2). Indeed it turns out that the gap of this SDP is huge and it is not hard
to construct an example with integrality gap Ω(n).12

Now, one can strengthen this SDP by the addition of the so-called triangle inequality constraints which
can be described as follows. Recall that we said that the SDP measures the extent to which u and v are
separated by the squared norm of (xu − xv)/2. This can be thought of as assigning a length function
`(u, v) to the pair u, v. The triangle inequality constraints stipulate that this length function satisfies triangle
inequality.

Notice that the SDP relaxation is at least as strong as the LP relaxation used by [GVY96]. Thus the gap of
the SDP relaxation is at most O(log k). However, unlike the LP relaxation, we do not know of any Ω(1) gap
example for this SDP. Thus it may be possible to obtain a constant factor approximation for the minimum
multicut problem by appropriately rounding the vector solution produced by this SDP. Such a result would
be extremely interesting, but seems out of reach of currently known SDP rounding techniques.

Sparsest cut
The input is similar to that for the minimum multicut problem discussed above. It consists of an undi-

rected graph G(V,E) with non-negative costs c(e) for each edge e ∈ E and k pairs of vertices (si, ti) with
non-negative demands di associated with each pair. The goal is to find a cut that minimizes the ratio of the
total cost of the edges removed to the total demand of the edges separated.

An LP relaxation for this problem similar to that for minimum multicut is as follows. We have a fractional
length `(e) ∈ [0, 1] associated with each edge e. The extent to which a pair si, ti is separated is measured
by yi, which is the length of the shortest path between si and ti according to this length function. The LP
solution is chosen so as to minimize the ratio of

∑
e∈E `(e) · c(e) to

∑
i yi · di.

Improving a series of previous approximation algorithms, Linial, London and Rabinovich [LLR95] and
9`(e) = 1 indicates that the edge is cut, while `(e) = 0 indicates that the edge is not cut.

10This encodes the constraint that at least one edge should be cut on every path from si to ti.
11This encodes the constraint that si and ti must be separated.
12This is achieved for an instance on a cycle with one terminal pair.
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independently, Aumann and Rabani [AR98] gave an O(log k) approximation for this problem, which is
the currently best known approximation factor. Their algorithm is based on rounding the LP solution by
embedding the length function into `1 with an O(log k) distortion..

Similar to the minimum multicut problem, one can consider an SDP relaxation for this problem. Here,
the length function is obtained by an embedding of the vertices on a unit sphere. In particular, `(u, v) is the
squared norm of (xu−xv)/2. The triangle inequality constraints stipulate that this length function is indeed
a metric. Again, we do not know of an Ω(1) gap example for this SDP.

Minsum 2-clustering
Given a graph G(V,E) with weights on edges, the goal is to divide the vertices into two disjoint clusters

such that the sum of the weights of the intracluster edges is minimized. Note that we discussed minsum
clustering earlier, but the assumption previously was that the weight function satisfied triangle inequality. In
this case, no such assumption is made. The objective function is exactly the complement of the MAX-CUT
objective.

The results of Garg, Vazirani and Yannakakis [GVY96] give an O(log n) algorithm for this problem.
Similar to the proposed SDP relaxations for multicut and sparsest cut, one can write down an SDP relaxation
for this problem as well. Again, triangle inequalities are required to ensure that the gap is not Ω(n). In
analyzing the SDP with triangle inequalities, we encounter the very same technical difficulties that we
encounter in the analysis of the SDPs for multicut and sparsest cut. (In this case, the difficulty comes in
analyzing pairs of vertices where the corresponding vectors subtend angles approaching π; in this case, the
probability that a random hyperplane has both vectors on the same side is much more than the contribution
of this pair to the objective function). In many ways, this is a simpler problem to analyze and understand.
Though arguably not as interesting in its own right, a better understanding of this problem may give valuable
clues to attack the more interesting problems of multicut and sparsest cut.

Feige and Schechtman [FS01] constructed gap examples for the MAX-CUT SDP relaxation with triangle
inequality. Since this problem is the complement of MAX-CUT, an obvious question that comes to mind
is whether the techniques of [FS01] can be used to construct gap examples for this problem. The graphs
constructed by [FS01] are not good gap examples for the minsum 2-clustering problem. This is because
for the graphs they construct, the angle subtended by vectors corresponding to end points of vertices is
bounded away from π. For such graphs, a cut obtained by a random hyperplane gives a constant factor
approximation.13

2.3.3 Ordering problems

We have a very poor understanding of the use of SDP relaxations for vertex ordering problems.14 We
mention a couple of interesting vertex ordering problems where there is a gap between upper bounds and
lower bounds or essentially, the only known upper bounds are trivial. SDP relaxations could prove to be
a useful algorithmic tool here. Another interesting problem in this category (not discussed due to space
constraints) is betweenness studied by Chor and Sudan [CS98a].

13It may be possible to modify their construction to obtain gap examples for the complementary objective. A plausible approach
for doing this could be the following: Pick points on the unit sphere and construct a graph by connecting points that subtend a very
large angle at the center. Finally, eliminate triples of points that do not satisfy the triangle inequality constriants. It will be tricky to
pick the right parameters to make this construction work since the triangle inequality constraints and the fact that we need points to
subtend large angles seem to conflict.

14One exception is the work of Blum, Konjevod, Ravi and Vempala [BKRV00] and Dunagan and Vempala [DV01] to the
minimum bandwidth problem.
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Maximum acyclic subgraph
Given a directed graph G, the goal is to find an acyclic subgraph of G that contains the largest number

of edges. Equivalently, we can formulate the problem as finding an ordering of the vertices v1, v2 . . . vn,
such that the number of edges of the form (vi, vj) for i < j is maximized. In general, edges may have
non-negative weights and then the objective is to maximize the weight of the edges picked.

A 1/2 approximation is trivial for this problem. Simply order the vertices arbitrarily. At least half the
edges must go either forward or backward in this ordering. This gives an acyclic subgraph with half the
number of edges. The best known result for this problem is due to Berger and Shor [BS97], who obtained a
1/2 +O(1/

√
dmax) approximation (where dmax is the maximum degree).

This problem, (also called the linear ordering problem) has been studied in the mathematical program-
ming literature [GJR85a, GJR85b]. LP relaxations for this problem typically use variables xij ∈ [0, 1] to
indicate whether i precedes j in the linear ordering together with other constraints on the xij variables. One
common family of constraints is the family of cycle constraints: for every cycle C, the sum of edge variables
does not exceed |C| − 1.

Recently, Newman and Vempala [NV01] showed that most of these LP relaxations have integrality gaps
approaching 1/2, i.e. they construct examples where the ratio of the value of the optimal integral solution
to the value of the fractional solution approaches 1/2. This implies that these relaxations do not provide
useful bounds that can be used to improve the aproximation factor beyond 1/2. [NV01] also prove that this
problem is hard to approximate beyond a factor of 65/66.

We propose to investigate an SDP relaxation for this problem. Here, we have a canonical unit vector v0
and unit vectors vij for every ordered pair of vertices (i, j). (vij = −vji.) If vij = v0, this implies that the
edge (i, j) is picked, while vij = −v0 implies that the edge (i, j) is not picked. The extent to which an edge
(i, j) is picked by the SDP solution is measured by the squared norm of (v0 + vij)/2. For every i, j, k, we
have the constraint that vij + vjk + vki has norm 1.15

It is not too hard to show that this SDP relaxation is at least as strong as the LP relaxation with cycle
constraints. However, unlike the LP relaxation, we do not know of a gap example for this SDP which shows
that we cannot achieve a factor better than 1/2 using this SDP relaxation. I plan to investigate this problem
further and a natural first step would be to obtain an increased understanding of the SDP relaxation. What
is interesting about the SDP is that is represents an ordering of the vertices via local information. If such a
local representation is indeed good enough to represent a total ordering, it would most likely be useful for
other vertex ordering problems as well.

Feedback edge set
Given a directed graph, the objective is to remove the smallest subset of edges such that the remaining

graph is acyclic. One can also consider the natural generalization to the setting where edges have weights
asociated with them. This is exactly the complement of the maximum acyclic subgraph problem, discussed
above.

The best algorithm for this problem, is an O(log n log logn) approximation due to Even, Naor, Schieber
and Sudan [ENSS98]. They use the value of an LP relaxation similar to the LP for maximum acyclic
subgraph with cycle constraints. Since the objective function is the complement in this case, the cycle
constraints now say that the sum of the fractional values of the edges in any directed cycle is at least 1. The
result of [ENSS98] implies that the gap of this LP relaxation is at most O(log n log logn). We do not have
any hardness results for this problem which suggest that a constant factor approximation is not possible.

I mention a particular special case of this problem that I intend to investigate. The hope is that this will
15This encodes the constraint that exactly two of the pairs (i, j), (j, k) and (k, i) must be oriented in the same direction.
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shed some light on the general case. The problem is of finding a permutation that is close to a given set of
permutations. This arises in finding an aggregate ranking from the rankings obtained from different sources,
such as rankings for web pages from different search engines [DKNS01]. More formally, the problem is
the following: Given k permutations of n items, the goal is to find a permutation π that minimizes the sum
of distances to the given k permutations. Here the distance between two permutations is measured by the
number of inversions.16

This is a special case of the feedback edge set problem on directed graphs. In this case, an approximation
ratio of 2 is easy to achieve. In fact, simply picking the best of the given k permutations achieves an
approximation factor of 2(1 − 1/k). However, achieving a better bound does not seem easy. I am hopeful
that investigating this problem further will lead to techniques to deal with orderings that would be useful for
other ordering problems as well.

2.4 Metric Embeddings

Linial, London and Rabinovich [LLR95] introduced the use of metric embeddings for analyzing the max-
flow min-cut gap of multicommodity flow problems and designing approximation algorithms for sparsest
cut. I mention two interesting problems related to metric embeddings and their relationship to approximation
problems.

Negative metrics in `1
Earlier, we described an SDP relaxation for minimum multicut and sparsest cut. It turns out that the gap

of the SDP relaxation can be related to a question about metric embeddings: Given a set of points inRd such
that the square of distances satisfy triangle inequality, what is the minimum distortion that must be incurred
in emedding the metric given by squares of distances in L1 ? It turns out that gap of the SDP relaxation is
closely related to the minimum distortion required for such an embedding.

Bourgain’s results [Bou85] imply that any metric on n points can be embedded into `1 with distortion
O(log n). The interesting question is whether any such squared Euclidean metric (also called a negative
metric) can be embedded in `1 with constant distortion. If true, it would imply that the gap of these SDP
relaxations we discussed is a constant.

Planar metrics
It has been conjectured that any planar metric (i.e. the shortest path metric on a weighted planar graph)

can be embedded into `1 with constant distortion. By the results of [LLR95], this would imply that the
max-flow min-cut gap for multicommodity flow on planar networks is a constant. Rao [Rao99] showed
that any planar metric on n points can be embedded into `1 with distortion O(

√
( log n)). This is the best

known distortion result for general planar metrics. Gupta, Newman, Rabinovich and Sinclair showed that
outerplanar metrics can be embedded into `1 with constant distortion. This was extended to k-outerplanar
graphs (for constant k) in recent work by Chekuri, Gupta, Newman, Rabinovich and Sinclair [CGN+02].
However, the question of whether general planar metrics can be embedded in `1 with constant distortion
remains an interesting open problem and I intend to investigate this.

2.5 Scheduling Problems: precedence constraints

Scheduling problems are amongst the oldest problems considered by algorithm designers. A number of ma-
jor advances have been made in the theory of scheduling algorithms over the past three decades. Yet, some

16An inversion is a pair of elements that is ordered differently in the two permutations.
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basic scheduling problems have remained open. I mention two problems relating to minimizing maximum
completion time (makespan) of a set of jobs under precedence constraints. These have been mentioned as
the first two problems in a recent list of 10 open problems in scheduling [SW99]. Making progress on either
of these two questions requires a new insight into dealing with precedence constraints. In particular, we may
need to devise new techniques to decompose directed acyclic graphs in order to obtain improved algorithms.
There could be a synergy between the ideas used to attack optimization problems on directed graphs and
these scheduling problems with precedence relationships. I elaborate on the problem of scheduling unit
time jobs on uniform machines below. The second problem (discussion omitted) is that of scheduling jobs
on related machines with precedence constraints, studied by Jaffe [Jaf80], Chudak and Shmoys [CS99] and
Chekuri and Bender [CB98].

Unit time jobs with precedence constraints
Given a set of unit time jobs with precedence constraints defined on them, the goal is to assign jobs to m

machines so as to minimize the maximum completion time. In other words, the goal is to assign each job
to one of T timesteps, where at most m jobs are assigned to one timestep; the objective is to minimize the
completion time T . The precedence constraints stipulate that if job i precedes job j, then i must be executed
before j.

The best known algorithm, due to Coffman and Graham [CG72] achieves an approximation ratio of 2− 2
m

for m processors. 17 Surprisingly, the problem is not even known to be NP-hard for a constant number of
processors. The scheduling survey by Karger, Stein and Wein [KSW98] mentions this as one of the most
famous open problems in scheduling.18

In undergraduate research [Cha95], I showed that no level based algorithm19. achieves an approximation
factor better than 2 − 2/

√
m. Note that all the algorithms known for this problem are level based. This

suggests that very different ideas are needed to break the 2 barrier. Recently, Ranade [Ran01] devised an
algorithm, very different from the Coffman-Graham approach, that achieves an approximation ratio strictly
better than 2 in the case when roughly, the precedence graph can be decomposed into large independent
pieces. This could be the basis of a divide and conquer algorithm to this problem. I intend to explore this
approach further.

Another possible approach is to consider LP relaxations for this problem. LP relaxations have been
employed very successfully for various other scheduling problems. In this case, it is natural to formulate an
LP with variables for each job and time slot indicating whether the job is scheduled in that time slot. We
can formulate precedence constraints by saying that if job i precedes job j, then the extent to which job i is
executed upto time t does not exceed the extent to which job j is scheduled upto time t + 1. This LP has
an integrality gap of 2 − 2/(m + 1). However, one can strengthen this LP by adding valid constraints for
all sets of at most k = poly(m) variables. 20 Such an LP can be solved for constant m. My preliminary
investigations did not yield gap examples for such a strengthened LP with gap approaching 2 as m → ∞.
I intend to explore this approach further to determine whether a better algorithm is possible for constant m
using such an LP.

17The analysis is due to Lam and Sethi [LS77] and an error in their analysis was corrected by Braschi and Trystram [BT94].
18The problem is known to be hard to approximate within a factor of 4/3 for general m, via a reduction from clique.
19A level based algorithm is one that assigns levels to each job based on the maximum length of the path starting from the job.

Jobs with higher level numbers are scheduled before jobs with lower level numbers
20One way to enforce such a constraint is to ensure that the values of the variables corresponding to any k jobs are convex

combinations of valid schedules for the k jobs.
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2.6 Approximation algorithms in unconventional settings

In addition to studying traditional applications of approximation algorithms, I also want to explore approxi-
mation in new scenarios. Here, much of the approximation machinery such as mathematical relaxations do
not apply and new techniques are required. For lack of space, I elaborate on only one such class of problems
below, related to information theoretic information capacity. Other problems I would like to study include
approximation questions in algebraic settings, such as minimizing the number of multiplications required in
evaluating a given set of monomials (see Pippenger [Pip80]), and a special case of this problem called the
minimum addition chain problem (see Yao [Yao76]).

Network Information Flow
Recently, Ahlswede, Cai, Li and Yeung [ACLY00] introduced an interesting model to give an information

theoretic characterization of network capacity. Given a network with capacities on links, they considered the
scenario where one transmitter (source) is broadcasting the same information to a set of receivers (sinks).
The key difference from the usual multicommodity flow formulations used to model such situations in
Computer Science, is that the transmissions on links are considered to be bits carrying information rather
than flows. Here, a router is allowed to transmit information on a link that is an arbitrary function of
the information it receives on other links (e.g. it could XOR certain bits and so on). It turns out that
this additional power allows a greater capacity to be supported than can be achieved by thinking of the
transmissions as flows. In this model, [ACLY00] gave an elegant characterization of network capacity for
multicast from a single source: the maximum transmission rate that can be supported for multicast from a
source to a set of sinks in a given network is exactly the minimum cut that separates the source from any
sink. Later, Li, Yeung and Cai [LYC02] showed that the network capacity could be achieved using linear
codes, i.e. where the transmitted bits are XOR functions of the received bits.

However, the question of characterization of network capacity for multiple source sink pairs is wide open.
The problem seems considerably more difficult in this case and an elegant characterization of the kind given
by [ACLY00] may not be possible. One of the major hurdles one runs into in the more general setting is that
we do not have a good characterization of the entropy function. Given a set of random variables, consider
joint entropies of subsets of these variables, conditional entropies and so on. We do not have a way to decide
if a given set of entropy function values is feasible (see [ZY97, ZY98, YZ01, CY02]). Recently, Koetter and
Meddard [KM02] gave an algebraic characterization of network capacity in the setting where transmissions
are restricted to be linear functions,21 and showed hardness of determining feasibility of network coding
strategies.

Here is a basic problem that occurs as a subcase of the 2 sources scenario and seems out of reach of our
current techniques: We wish to simultaneously transmit two sources X and Y using n bits (think of these as
n channels of capacity 1). We are given sets RX and RY of receivers, each with access to a specified subset
of the n bits. Each receiver in RX must be able to decode X and similarly for RY . Clearly, if X and Y have
very high rates, such an encoding will not be possible. Can we characterize the rate pairs for which such a
scheme is possible ?

This information theoretic model of network flow is very interesting and has not been considered in the
Computer Science community. I have begun peliminary investigations of this model in collaboration with
Rina Panigrahy (Cisco Systems) and Amit Sahai (Princeton). It would be interesting to see if the techniques
developed in the theoretical computer science community can be extended to obtain approximation results
for this information theoretic notion network capacity. Very likely, new tools will have to be developed to
deal with these problems.

21It is not known whether linear functions suffice to achieve network capacity in the general case.
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3 Previous Research Accomplishments

A significant portion of my research has been focussed on the study of approximation algorithms. In joint
work with Guha, Shmoys and Tardos [CGTS99], we developed the first constant factor approximation for
the k-median problem; this problem had been open for a long time. My original conference submission with
Sudipto Guha was awarded the best student paper award at STOC ’99. In joint work with Guha [CG99],
I devised improved combinatorial algorithms for k-median and simple local search heuristics for facility
location. In collaboration with other researchers, I also devised algorithms for other clustering objectives
[BCR01, CP01] and introduced formulations for clustering problems with outliers [CKMN01].

Together with colleagues at Stanford [CCGG98, CCG+98], I showed that every metric can be approxi-
mated by a small number of tree metrics. This yields a very general derandomization technique for algo-
rithms that use the framework of probabilistic approximation of metrics via tree metrics. Other optimization
problems I have studied are the directed Steiner tree problem [CCC+99] (mentioned previously) and prob-
lems in vehicle routing [CKR98, CR98].

In the past, I have also been interested in online algorithms, having worked on online algorithms for page
migration [BCI01], load balancing [BCK00], and models for delayed information and action [ACM01].

Some of my recent research has focused on the design of algorithmic techniques for large data sets, such
as (1) algorithms to produce compact sketches of data that enable approximate computations to be done us-
ing the sketches and (2) algorithms that process large amounts of data in one pass (i.e. the streaming model).
In particular, I have worked on designing hash functions for estimating similarity [BCFM00], providing a
mathematical analysis of a technique used to eliminate near duplicate documents in AltaVista. This tech-
nique, called minwise independent permutations, has been used in several research papers [CDF+00, HGI00,
CKKS00, CJK+01, GGK01]. In a recent paper [Cha02b], I showed that techniques for rounding LPs and
SDPs in approximation algorithms could be interpreted as constructions of hash functions for estimating
similarity, providing new constructions for vector similarity and the earth mover distance.

A recent paper [CCF02] devised an approximate counting data structure for identifying frequent items in
one pass over a data stream. I have also been interested in designing streaming algorithms for clustering.
An earlier paper [CCFM97] addressed this issue for the p-center objective and a recent paper [CPO02]
presented a streaming algorithm for the k-median objective.

4 Education Plan

Education, both at the undergraduate and graduate level, is an integral part of this career development plan.
I plan to involve students, both at the graduate and undergraduate level in the research activities outlined in
this proposal. Undergraduate research projects involving constructing and analyzing gap examples for LPs
and SDPs will make valuable contributions to the proposed study and expose undergraduate students to the
excitement of doing research. The involvement of Ph.D. stdudents is vital for the success of this project. I
am currently advising two PhD students, one of whom is working on some of the problems outlined in this
proposal. The educational component of this proposal also involves a combination of a redesign of existing
courses and the introduction of new ones, distilling ideas developed in current research.

Discrete Mathematics
Beginning Fall 2002, I will be teaching the Discrete Mathematics course at Princeton. I intend to revamp

the course organization significantly. This has traditionally been a problematic course because of the diffi-
culty in motivating students to learn the course material. My goal will be to bring out the applications of
discrete mathematics via examples that students can relate to and appreciate. For the more advanced stu-
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dents, I would like to point to research papers where concepts they learn in the course are used. Topics that
I particularly want to emphasize are proof techniques, probability and linear algebra. I think an important
concept that people ought to learn from this course is the notion of a rigorous proof and how one goes about
writing correct proofs. The course should also familiarize students with thinking abstractly. In teaching
subjects such as probability and linear algebra, I plan to draw examples from the web and link analysis to
bring out the potential applications and strengths of these techniques. I also plan to incorporate the use of
mathematical software such as Mathematica or Maple into the course contents - I think that the use of such
software packages can be a very valuable addition to the discrete mathematics toolkit and a useful aid in
enhancing ones ability to think about and analyze problems. The goal of the course will be to equip stu-
dents with the basic tools and techniques from discrete mathematics that all computer science majors should
know and can expect to use. At the same time the course should be able to whet the appetitites of the more
mathematically inclined students and provide a solid foundation for further study in theoretical computer
science.

Algorithms for Large Data Sets
In Spring 2002, I designed and taught an advanced undergraduate course about new algorithmic tech-

niques for large data sets. (http://www.cs.princeton.edu/courses/archive/spring02/cs493/).
The course covered a combination of classical topics as well as a selection of some of the interesting ideas
that have arisen in recent research.

The course came out of my belief that at the heart of many of the recent developments of algorithms for
large data sets, lie simple basic principles and techniques that can be understood and appreciated by anyone
with a reasonable mathematical background. Indeed, the first offering of the class attracted about 20 students
with 10 of them outside of theory. This class was designed to serve as a gentle introduction to advanced
algorithmic ideas that they would not learn in standard algorithms classes and that would potentially be
useful to them in their individual fields of interest. Course notes are available off the course web page and
should serve as a valuable resource. These will be edited, embellished and updated with future offerings of
the course and finally be turned into a book.

The course will be developed over several years. I expect the next offering of the course to be a graduate
class, oriented around research projects. The goal will be to get students to work on topics that could
potentially be turned into research papers.Software developed as a result of these projects will be made
freely available to other researchers who may want to use it for experiments.

New Graduate Classes
Together with the other theory faculty at Princeton, I am involved in a redesign of the graduate theory

curriculum. The number of theory faculty at Princeton gives us the flexibility to design and offer innovative
graduate classes. So far, our theory curriculum does not include graduate classes on specialized topics such
as Approximation Algorithms, Randomized Algorithms, Online Algorithms, Communication Complexity
and so on. While students are exposed to these topics in various courses, there is no single course that
covers a particular topic in detail. These and other sub-areas in theoretical computer science have been
around long enough and have matured to the point where an entire course can be devoted towards covering
the foundational results in the area. In preparing our graduate students, I believe it is important to expose
them to such an exhaustive coverage of specific areas. This will allow them to draw on ideas outside of their
immediate research area in conducting their own research. Hopefully, this will also encourage them to work
on problems outside their immediate area of focus and broaden their research profile. The addition of all
these new courses cannot be done single handedly and will certainly be done with the collaboration of my
colleagues. My contribution towards these new classes would be the introduction of a new graduate class
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on Approximation Algorithms. In later years, I will also teach graduate classes on Randomized Algorithms
and On-line Algorithms. Below, I elaborate on my plans for an Approximation Algorithms class.

Approximation Algorithms
In Fall 01, I taught a graduate seminar on Approximation Algorithms (see the webpage at

http://www.cs.princeton.edu/courses/archive/fall01/cs593/) which consisted of 50%
lectures and 50% student presentations. My plan is to alternate offerings of such a graduate seminar with a
regular course on Approximation Algorithms. The regular course will build up a basic background in ap-
proximation algorithms, covering classical problems and illustrating different techniques through carefully
chosen problems. Two optimization problems I plan to use as examples are facility location and k-median.
Both these problems have been the subject of active research recently and are excellent examples to illustrate
the application of different algorithmic techniques that can be used to develop approximation algorithms,
including LP-rounding [STA97, CGTS99], the primal-dual method [JV99], local search and greedy methods
[CG99, AGK+01], Lagrangian relaxation [JV99], and dual fitting [MMSV01]. The seminar will focus on
more advanced topics and involve student presentations of relatively new research papers. My goal will be
to select papers that lead to interesting open problems and encourage students to work on these. The course
should be useful for theory students as well as mathematically inclined students from other areas who want
to understand the general tools and techniques developed in the field of approximation algorithms. On the
other hand, the seminar should be useful for students who are considering doing research in approximation
algorithms.

18



References

[ABC+99] F. N. Afrati, E. Bampis, C. Chekuri, D. R. Karger, C. Kenyon, S. Khanna, I. Milis,
M. Queyranne, M. Skutella, C. Stein, and M. Sviridenko. Approximation Schemes for Min-
imizing Average Weighted Completion Time with Release Dates. Proc. 40th FOCS, pp. 32–44,
1999.

[ACLY00] R. Ahlswede, N. Cai, S.-Y. R. Li and R. W. Yeung. Network information flow. IEEE Transac-
tions on Information Theory, 46(4):1024–1016, 2000.

[ACM01] S. Albers, M. Charikar, and M. Mitzenmacher. Delayed Information and Action in On-Line
Algorithms. Proc. Information and Computation, 170(2): 135–152, 2001.

[AK98] N. Alon and N. Kahale. Approximating the Independence Number via the θ-function. Mathe-
matical Programming, 80: 253–264, 1998.

[ASZ01] N. Alon, B. Sudakov and U. Zwick. Constructing worst case instances for semidefinite pro-
gramming based approximation algorithms. Proc. 12th SODA, pp. 92–100, 2001.

[Arc01] A. Archer. Two O(log∗ k)-Approximation Algorithms for the Asymmetric k-Center Problem.
Proc. IPCO, pp. 1–14, 2001.

[Aro98] S. Arora. Polynomial Time Approximation Schemes for Euclidean Traveling Salesman and
other Geometric Problems. JACM 45(5): 753–782, 1998.

[ABL02] S. Arora, B. Bollobas and L. Lovasz. Proving Integrality Gaps without Knowing the Linear
Program. To appear in Proc. 43rd FOCS, 2002.

[AFK96] S. Arora, A. M. Frieze, and H. Kaplan. A New Rounding Procedure for the Assignment Problem
with Applications to Dense Graph Arrangement Problems. Proc. 37th FOCS, pp. 21-30, 1996.

[AKK99] S. Arora, D. R. Karger, and M. Karpinski. Polynomial Time Approximation Schemes for Dense
Instances of NP-Hard Problems. JCSS 58(1): 193–210, 1999.

[ARR98] S. Arora, P. Raghavan, and S. Rao. Approximation Schemes for Euclidean k-Medians and
Related Problems. Proc. STOC, pp. 106-113, 1998.

[AGK+01] V. Arya, N. Garg, R. Khandekar, A. Meyerson, K. Munagala, and V. Pandit. Local search
heuristic for k-median and facility location problems. Proc. 33rd STOC, pp. 21-29, 2001.

[AR98] Y. Aumann and Y. Rabani. An O(log k) Approximate Min-Cut Max-Flow Theorem and Ap-
proximation Algorithm. SIAM J. Comput. 27(1): 291–301, 1998.

[AA97] B. Awerbuch and Y. Azar. Buy-at-Bulk Network Design. Proc. 38th FOCS, pp. 542–547, 1997.

[Bar96] Y. Bartal. Probabilistic approximation of metric spaces and its algorithmic application. Proc.
37th FOCS, pp. 184–193, 1996.

[Bar98] Y. Bartal. On approximating arbitrary metrics by tree metrics. In Proc. 30th STOC, pp. 161–
168, 1998.

[BCI01] Y. Bartal, M. Charikar, and P. Indyk. On page migration and other relaxed task systems. TCS
268(1): 43–66, 2001.

19



[BCR01] Y. Bartal, M. Charikar, and D. Raz, Approximating min-sum k-clustering in metric spaces.
Proc. 33rd STOC, pp. 11-20, 2001.

[BE81] R. Bar-Yehuda and S. Even. A Linear-Time Approximation Algorithm for the Weighted Vertex
Cover Problem. J. Algorithms, 2(2): 198–203, 1981.

[BE85] R. BarYehuda and S. Even. A localratio theorem for approximating the weighted vertex cover
problem. Annals of Discrete Mathematics, 25: 27-45, 1985.

[BS97] B. Berger and P. W. Shor. Tight Bounds for the Maximum Acyclic Subgraph Problem. J.
Algorithms 25(1): 1-18, 1997.

[BCK00] P. Berman, M. Charikar, and M. Karpinski. On-Line Load Balancing for Related Machines. J.
Algorithms 35(1): 108–121, 2000.

[Blu94] A. Blum. New approximation algorithms for graph coloring. JACM, 41: 470–516, 1994.
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