Proposal Summary

This Career Development Plan proposes an integrated collection of research and educa-
tional activities focused on algorithms for high-dimensional geometric problems. Geometric
computing with high-dimensional data is of crucial importance to many areas of computer
science, including machine learning, data mining, databases and information retrieval, com-
puter vision and computational biology. Example problems in this area are: nearest neighbor
search, many variants of data clustering, and discovering linear structure of the data (e.g.
via Principal Component Analysis (PCA)). Unfortunately, the classical geometric algorithms
for many of these problems do not scale well with the dimension. For example, the running
times of the classical algorithms for the nearest neighbor search depend exponentially on the
dimension, which makes them inefficient for dimension higher than, say, 20. This is unfortu-
nate, since many applications involve number of dimensions anywhere from a few hundred
to a few million.

In recent years, new, powerful techniques for solving these problems have been discovered,
most notably dimensionality reduction and random sampling in geometric spaces. The al-
gorithms obtained using those techniques enjoy very low (at most linear) dependence on
the dimension, at the cost of providing approximate answers. The problems amenable to
these techniques include nearest neighbor search, clustering and PCA. However, the algo-
rithmic solutions to these problems still possess (sometimes quite severe) limitations. In this
proposal we identify the key directions for circumventing these limitations and making the
algorithms fully satisfying, both in theory and in practice.

The techniques which led to the development of the aforementioned algorithms are new and
still not widely known. They include many tools which have been developed during 70s and
80s in the field of mathematics called functional analysis, and in particular in the local theory
of Banach spaces. However, computer scientists became aware of those methods only very
recently, and many of the fundamental results are still not widely known or used. Therefore,
it is important to make these results accessible to large computer science audience so that
they can be successfully used, investigated and developed. In the Education Plan section
we outline a plan on how to make them more accessible to students as well as computer
scientists.



1 Introduction

Geometric computing with high-dimensional data is of crucial importance to many areas
of computer science, including machine learning, data mining, databases and information
retrieval, computer vision and computational biology. Unfortunately, the classical geometric
algorithms for many of the key problems (e.g., nearest neighbor, clustering) do not scale well
with the dimension. In recent years, new powerful techniques for solving these problems have
been discovered, most notably dimensionality reduction and random sampling in geometric
spaces. The algorithms obtained using those techniques enjoy very low (at most linear)
dependence on the dimension, at the cost of providing approximate answers. In the Research
Plan section we describe the above results and techniques in greater detail and identify key
problems which we believe can be successfully attacked using this approach.

The techniques which led to the development of the aforementioned algorithms are new and
still not widely known. In the Education Plan section we outline a plan how to make them
more accessible to students as well as computer scientists.

2 Research Plan

2.1 The context

Computing with massive and high-dimensional data is pervasive in many of today’s applica-
tions. Such data arise whenever the application deals with large amounts of complex objects
(text documents, images, web pages, genetic sequences, etc.) In order to handle such ob-
jects, one needs to extract important features of the objects, usually of numerical nature,
and use vectors of such features to represent the objects. For example, the fundamental
paradigm of information retrieval is that, for the purpose of measuring similarity between
documents, a text document can be represented by a long vector of “counters”, where each
“counter” contains the number of occurrences of a specific word. Similarly, in the field of
wisual information retrieval, images are represented by features describing color and texture
characteristics. In computational biology, features can include presence or absence of cer-
tain properties of a genetic sequence, or even the sequence itself if only base substitutions
are allowed. In the field of data mining, features can include characteristics or identities of
customers who bought a given product.

Once the feature representation of the data set has been extracted, most of the application
tasks can be reduced to algorithmic problems involving a set of high-dimensional points. In
most situations, those problems can be classified into the following three categories:

e (lassification: In this case, each point is labeled as “positive” or “negative”, and the
goal is to design a classifier which, given a new point, assigns the “correct” label to it.
This is often done by finding a hyperplane (or some higher dimensional surface) which
separates “most” positive points from “most” negative points, and classifying a new
point depending on which side of the hyperplane it lies. Alternatively, one can classify



the point using the label of its nearest neighbor. Both approaches involve well-defined
algorithmic problems in high-dimensions.

e Data analysis: In this case, the data is unlabeled, but is conjectured to possess certain
underlying structure which the user wants to discover. For example, the data could
have a linear structure, i.e., be well-approximated by a low-dimensional hyperplane;
in this case one would apply Principal Component Analysis (PCA) to discover such
structure. Alternatively, the points could be clustered, i.e., partitioned into small
number of groups, where points within the same groups are very close to each other.
Again, both scenarios involve an algorithmic problem in high-dimensional space.

e Retrieval: Here, we are initially given a database of points/objects. The user can query
the database, searching for a small number of interesting objects. In a very popular
stmilarity search setting, the query itself is a point, and the database retrieves a small
number of points closest to the query. As before, this can be reduced to an algorithmic
problem (specifically, nearest neighbor search) in high dimensions.

Since the performance of the above applications depends heavily on the efficiency of its algo-
rithmic components, improving the latter has been an important research goal in a variety of
fields for over three decades. For example, some the algorithms for nearest neighbor search
or clustering have been among of the first results obtained in the field of computational ge-
ometry. Unfortunately, the running times of those algorithms, both in theory and practice,
depend ezponentially on the dimension (e.g., see [AMNT94]), and so they are very inefficient
in the above applications. This phenomenon, often referred to as “the curse of dimension-
ality”, is widely conjectured to be inevitable, as long as one insists on answers which are
always fully accurate. In particular, many variants of clustering problems are known to be
NP-hard in high dimensions.

The running time of algorithms for Principal Component Analysis depends on the way the
error of the linear approximation is measured. In the most common case of sum of squares
of errors of individual points, the problem can be solved using Singular Value Decomposition
(SVD) in O(d?n) time, where n denotes the number of points and d denotes the dimension.
Although this running time is polynomial in d, its quadratic dependence on the dimension
makes the algorithm inefficient when the number of dimensions is large! [FKV98].

The problem of finding optimal separating hyperplane is notoriously hard. Even when the
error-free separation exists and therefore the solution can be found using linear programming,
the algorithms have running times far from linear.

2.2 Approximate solutions: past work and open problems

In recent years, a significant progress in designing efficient algorithms for high-dimensional ge-
ometric problems has been made, by allowing the algorithms to return approrimate answers.

! Alternatively, one can use Power or Lanczos method to solve SVD. In this case, the running time becomes
O(kdnlI), where k is the dimension of the approximating hyperplane and I is the number of iterations of the
algorithms. Again, the running time is far from linear.



The main tool used by these algorithms has been the dimensionality reduction technique.
This approach allows one to reduce the dimension of the input space exponentially and still
(approximately) preserve crucial properties of the input data. For example, the Johnson-
Lindenstrauss lemma [J1.84] guarantees that any set of n points in a high-dimensional Eu-
clidean space can be quickly embedded into an O(logn/e?)-dimensional space, while pre-
serving all distances up to a multiplicative factor of (1 + ¢€), for any € € [0,1]. The embed-
ding can be in fact created by choosing a random linear mapping, and can be computed
in O(ndlogn/e®) time. Thus, by applying dimensionality reduction first and then running
an algorithm on the reduced space, one can solve problems deemed intractable otherwise.
This approach is particularly useful for geometric algorithms which have running times or
storage requirements exponential in the dimension. However, even if the dependence of the
running time on the dimension is only polynomial (not exponential), substantial savings in
the running time can be achieved if the dimensionality of the input space is large. Con-
sequently, dimensionality reduction has been used as a building block in many theoretical
results (discussed below), as well as in many applied scenarios, in particular by Ritter, Kaski
and Kohonen [RK89, Kas98], who rediscovered a version of Johnson-Lindenstrauss lemma
by themselves.

In case of nearest neighbor search and related problems, dimensionality reduction resulted
in several approximate algorithms [Kle97, IM98, KOR98, Ind98, BOR99]. Those algorithms
manage to achieve polynomial dependence of the running time on the dimension; see Sec-
tion 2.3 for a more detailed description. The main idea behind those algorithms is to con-
struct data structures which achieve at most exponential dependence on the dimension, and
then reduce this dependence to polynomial via dimensionality reduction.

For the Singular Value Decomposition problem, several approximate algorithms are known
[FKV98, DKFV99, AMO01] (in addition to a huge set of exact or almost exact algorithms).
The approximate algorithms run in at most linear (sometimes even sublinear) time and
produce a k-dimensional approximation P’ of the d-dimensional set of points P, such that
the approximation error |P — P'| exceeds the error achievable using the best k-dimensional
approximation by an additive term depending on |P|. The error function |- | can be either
the Frobenius or the Euclidean norm. The main tool used in those algorithms is a careful
random sampling of the input points and/or the dimensions of the input space.

Many approximate algorithms for clustering in high-dimensional spaces have been discovered.
In particular, polynomial-time algorithms for learning mixtures of Gaussians have been given
in [Das99, AKO01]. The latter algorithms use dimensionality reduction in order to remove
the exponential dependence of the running time on the dimension. More general algorithms
working in any metric space have been also designed, see e.g., [CGTS99, JV99, Ind99a,
GMMOO01] for the algorithms for the k-median problem.

The above results indicate that it is possible to achieve significantly improved running times
for the algorithms in high-dimensional spaces provided we allow them to output approximate
answers. However, much more remains to be done in order to leverage the full power of
approximation in the context of high-dimensional problems. The following directions seem
to be of particular interest:



1. Faster approximate nearest neighbor algorithms for /s norm. The currently known
algorithms offer either very fast (polylogarithmic) query time using large storage, or
sublinear (but polynomial) query time using fairly small storage (see Section 2.3 for
more information). An ideal algorithm would have both fast query time and use small
storage. Currently, there is no evidence that such an algorithm cannot exist. Having a
fast algorithm for the dynamic approximate nearest neighbor would be of even greater
value, since by the results of [GIV01] several other problems, such as closest pair,
diameter and variants of clustering, can be reduced to the former problem with low
overhead.

The hope of achieving better algorithms for the nearest neighbor search is justifiable
by the fact that, very recently, a new approximate algorithm for the furthest neighbor
search has been obtained [Ind01]. This algorithm achieves better running time and
storage requirements than the earlier algorithm of [GIVO01], which was obtained by
a reduction to the approximate nearest neighbor problem. It is plausible that the
reduction can be reversed, thereby leading to a more efficient algorithm for nearest
neighbor search.

2. Approximate nearest neighbor for general classes of spaces. All algorithms discovered
so far are tailored to very specific spaces, namely [,, p € [1...2] [IM98, KOR98], and
lo [Ind98]. The algorithms for these two scenarios use very different techniques: the
first one uses dimensionality reduction tools, while the second is based on divide and
conquer approach. Is it possible to unify them somehow ? Ideally, one would like to
obtain an algorithm which works for all normed spaces, or at least all [, norms. Since
such algorithms exist for low-dimensional spaces [AMN194, AEIS99], it is plausible
they could also exist in the high-dimensional case. In addition to the clear advantage
of having one algorithm working for different settings, such a result would also yield
the first algorithm for norms not covered by the existing algorithms. This is of large
interest, since it has been observed (e.g., see [AAHO1]) that for many data sets, metrics
induced by [, norms with p < 1 provide more meaningful estimation of the distances
between the points than the standard /; or /5 norms.

3. Faster algorithms for discovering linear structure of the data. The existing approximate
SVD algorithms mentioned earlier have very efficient running times, but also incur large
additive errors. In particular, they can report a solution with error arbitrarily larger
than the error of the optimal approximation. Thus, it is of great interest to design
fast algorithms which provide multiplicative approximation guarantees. Ideally, the
algorithms should return solutions with cost at most (1 + €) times the optimal cost.

The scenario when the error is measured not by computing the sum of squares of the
differences (but instead, say, by computing the maximum difference) is even less under-
stood. Although several algorithms are known for the maximum difference case (e.g.,
see [HPVO01] and the references therein), all of them have running times exponential in
the dimension, which makes them inapplicable in the high-dimensional setting. Thus,
obtaining efficient algorithms for these cases is an important open problem.



4. Algorithms for discovering non-linear structure of the data. In many settings, the
structure of the data is significantly non-linear. Recently, several new algorithms which
capture non-linear structure of the data have been discovered [RS00, TdSL00]. How-
ever, the approaches to this problem have so far been mostly heuristic, and almost no
theoretical research in this area has been done (to the knowledge of the author). It
is therefore of great importance to understand the intricacies of non-linear structure
discovery, capture them in a common formal framework and design efficient algorithms
for the formally posed problems.

5. More general dimensionality reduction techniques. As mentioned earlier, dimension-
ality reduction allows one to speed-up virtually any algorithm designed for high-
dimensional spaces. Unfortunately, the aforementioned Johsnon-Lindenstrauss lemma
holds only for the Euclidean space. For other norms, only fairly limited analogs of
this lemma exist (cf. [Ind00b]). Extending dimensionality reduction techniques to non-
Euclidean spaces would provide a very general tool for improving the efficiency of
algorithms in those spaces.

2.3 Research accomplishments

The computational geometry problems in high-dimensional spaces and related problems
have been focal points of my research ever since I was a graduate student at Stanford. I
have numerous publications in leading conferences and journals of the areas. The publica-
tion [Ind00Ob] was awarded the Machtey Award, as the best student paper presented at the
Symposium on Foundations of Computer Science FOCS’00. Some details of the primary
technical results are given are given below.

In a paper written jointly with Rajeev Motwani [IM98], we gave the first known (1 + ¢)-
approximate algorithms for the nearest neighbor problem with both efficient query time and
polynomial (in n) storage. The first algorithm (obtained independently in [KOR98| and
presented at the same conference) had query time polynomial in d + logn and used storage
polynomial in n. Thus we showed that one can obtain essentially optimal query time while
avoiding the “curse of dimensionality”. Also, from the technical perspective, the above was
the first result achieving exponential improvement in time or space by using dimensionality
reduction techniques. Unfortunately, the storage requirements were still too large for the
algorithm to be practical. The second algorithm circumvents this problem by using only
n'+t1/(49 units of additional storage and still achieving a sublinear query time of dn'/(1+¢),
The latter algorithm is practical and is in many scenarios faster than previously known
algorithms, sometimes by several orders of magnitude [GIM99]. Its variants have been since
used by several researchers, for efficient comparison of genomic sequences [Buh01] and motif
finding [BT01], clustering of web documents [HGIO0] and data mining [CDF*00]. In a
sequence of follow-up papers [Ind98, FCI99, Ind00a, GIV01] we addressed other algorithmic
problems in high-dimensional geometric spaces. In particular, we focused on the class of
prozimity problems (e.g., closest pair, variants of clustering etc) which contains problems
defined exclusively in terms of distances between the input points.



The above results gave rise to the following question: is geometric structure of the input
necessary for obtaining fast algorithms for proximity problems ? In papers [Ind99a, Ind99b]
I showed that the answer is no: several proximity problems, including k-median and other
variants of clustering, can be solved efficiently if we only assume that the relevant distances
satisfy metric constraints. The algorithms developed in the paper in fact have running time
sublinear in the input size, meaning that they complete their task without full knowledge of
their inputs. The results and techniques from this paper have been subsequently used and
refined, e.g., in [GMMOO1, ThoO1].

My recent paper [Ind00b] addressed another problem of computation with sublinear re-
sources, this time using sublinear space. In particular, it addresses the problem of main-
taining an [, norm of a d-dimensional vector z, under dynamic increments/decrements of
its coordinates, using storage sublinear (in fact, polylogarithmic) in d. This problem is
of large importance in several fields, in particular in databases, since it specializes to the
problems of maintaining the number of distinct elements in a relation, or maintaining the
size of its self-join. Owing to its importance, this problem was a topic of several research
papers [FM85, AMS96, FKSV99, FS00]. In [Ind00b] I presented an algorithm which unifies
(and in many cases improves) many of the earlier results. In addition, it provides the first
known dimensionality reduction method for the /; norm. The main technical contribution
of the paper is the use of stable distributions (also called heavy-tailed distributions or power
laws), which recently attracted significant attention in many areas of computer science, but
had not been used as an algorithmic tool before.

3 Education Plan

As a field using the language of mathematics, theoretical computer science benefits tremen-
dously from discovering connections between the problems of its interest and other areas of
mathematics. Examples of such discoveries, which became great success stories are: using
discrete mathematics tools for the purpose of rigorous analysis of algorithms, basing modern
cryptography on number-theoretic assumptions, or using methods from coding theory to
characterize the computational power of interactive and probabilistically checkable proofs.
It is of crucial importance that mathematical areas that provide useful algorithmic tools are
identified, and its methods made accessible to computer science researchers.

In recent years, great progress for many algorithmic problems has been achieved using the
method of approximate embeddings. This approach allows one to obtain an approximate
solution to a problem defined over a “difficult” geometric (or metric) space, by embedding
this space into an “easier” one. The dimensionality reduction technique, described earlier, is
a special case of this method, where the “easy” space has significantly lower dimension than
the “difficult” one.

Many of the approximate embedding tools have been developed during 70s and 80s in the field
of mathematics called functional analysis, and in particular in the local theory of Banach
spaces. However, computer scientists became aware of those methods only very recently,
and many of the fundamental results are still not widely known or used. Therefore, it is
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important to make those results accessible to large computer science audience so that they
can be successfully used, investigated and developed.

Thus, my main educational goal for the next few years is to identify and disseminate the key
tools and methods of approximate embeddings. As the first step, I have designed and taught
(during Fall 2000) an advanced topics course entitled “Algorithmic aspects of embeddings”.
Thanks to the course, many advanced graduate students became familiar with the topic
and already some of them obtained novel algorithmic results using the methods presented
in the course. However, the advance nature of the course made it difficult for non-theory
students to fully benefit from it. Therefore, during Fall 2001, I am planning to co-teach
an introductory course on “Computational Geometry”, which will include basic material on
geometric embeddings as a part of its curriculum. Since the course is aimed at beginning
graduate students and advanced undergraduates, it is likely to reach a much wider audience
than a highly specialized advance topics course can hope to.

In addition to course development, I am planning to prepare several tutorials and surveys
articles devoted to approximate embeddings. At this moment, I am preparing a tutorial
on this topic, to be presented at the Symposium on Foundations of Computer Science,
2001. In addition, I have been recently invited to write two chapters for the upcoming 2nd
edition of the “CRC Handbook of Discrete Computational Geometry”. One of the chapters,
entitled “Nearest neighbor in high dimensions and related problems”, will contain many of
the algorithmic applications of geometric embeddings, while the second chapter (co-authored
with Jiri Matousek) will be entirely devoted to geometric embeddings of finite metric spaces.

3.1 Education accomplishments

My formal teaching experience includes 1 semester of teaching assistantship at Warsaw
University (Poland), 2 semesters of teaching assistantship at Stanford, one advanced topics
course and one undergraduate level course at MIT. The advanced topic course, devoted to
“Algorithmic aspects of embeddings”, has been entirely designed by myself. Additionally, I
have presented over 20 seminars in research labs and universities all over the world, including
U.S.A., Germany and Poland. I have been invited to teach a mini-course on “Nearest
Neighbor and Other Problems in High-dimensional Computational Geometry” (six lectures)
at AT&T Shannon Lab in Florham Park, 1999, and to present its one hour version during
DIMACS Summer School of Data Mining (Rutgers University, Piscataway, NJ, 2001). I have
also been invited to give a two hour long tutorial on “Algorithmic Aspects of Geometric
Embeddings” at the Symposium on Foundations of Computer Science, 2001.
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