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Project Summary

Randomization is one of the most pervasive paradigms in computer science, with widespread use in areas
including algorithm design, cryptography, coding theory, network design, and interactive proofs. However,
it is still not known to what extent the randomness is really necessary in these settings, and understanding
this is important for both practical and theoretical reasons. The main approach to addressing this issue is via
the paradigm of pseudorandomness, which is the theory of generating objects that “look random” despite
being constructed using little or no randomness.

The proposed research builds upon recently established connections between four of the most impor-
tant kinds of pseudorandom objects: pseudorandom generators — procedures which stretch a short “seed”
of truly random bits into a long string of “pseudorandom” bits which cannot be distinguished from truly
random by any efficient algorithm, expander graphs — networks which are sparse but nevertheless highly
connected, error-correcting codes — methods for encoding messages so that even if many of the symbols
are corrupted, the original message can still be recovered, and extractors — procedures which extract almost
uniformly distributed bits from a source of biased and correlated bits. While these objects were previously
each the subject of largely distinct bodies of research, several recent discoveries have shown that these ob-
jects are almost the same when interpreted appropriately. This unification makes the time ripe for substantial
advances in the area, and also for educating a larger community about the topic. With this in mind, the broad
goals of this career development plan are the following:

� Understand more fully and strengthen the connections between these various pseudorandom objects.

� Exploit these connections to attack some of the important open problems in the area (such as the
construction of constant-degree expander graphs with near-optimal expansion, the complete deran-
domization of space-bounded algorithms, and determining to what extent circuit lower bounds are
necessary for derandomizing time-bounded algorithms).

� Make use of the improved understanding of pseudorandomness to improve and extend its applications
in other areas, such as cryptography, complexity theory, and data structures.

� Involve students at all levels of the research, from testing potential constructions through computer
experiments, as might be suitable for undergraduates, to the mathematical research suitable for Ph.D.
students.

� Convey the unified theory of pseudorandomness that we are developing to a larger community. This
will be done by developing a new graduate course on the pseudorandomness (with publicly available
lecture notes) and filtering aspects of the theory into undergraduate and graduate courses on related
topics (such as a new undergraduate course on cryptography).



1 Introduction

During the past few decades, randomization has become one of the most pervasive paradigms in computer
science. Its widespread use includes:

Algorithm Design For the problem of testing whether a number is prime, which arises often in cryptogra-
phy, the only efficient algorithms known require generating random numbers [SS77, Mil76, Rab80].
Similarly, the Markov Chain Monte Carlo Method is the only way we know to efficiently approximate
for various quantities arising in statistical physics, such as the matrix permanent [JS89, JSV01].

Cryptography Randomness is woven into the very way in which we define security. Indeed, a “secret key”
is not secret if it is fixed rather than random. Moreover, often the cryptographic algorithms themselves
must be randomized to achieve satisfactory levels of security (cf., [GM84]).

Randomized Constructions Many useful combinatorial objects can be constructed simply by generating
them at random. (This is known as the Probabilistic Method [AS00].) Examples include error-
correcting codes for communicating on noisy channels [Sha48] and various kinds of fault-tolerant
networks (known as expander graphs) [Pin73].

Interactive Proofs Randomization, together with interactive communication, can also be very useful when
one party wishes to convince another of some assertion [GMR89, BM88]. Verifying such interactive
proofs can often be much more efficient than verifying classical “written” proofs [LFKN92, Sha92].
Interactive proofs can also have properties (such as leaking “zero knowledge”) that make them widely
applicable in cryptography [GMR89, GMW91].

So randomness appears to be extremely useful in these settings, but we still do not know to what extent
it is really necessary. Thus, the proposed research is driven by the following question.

Motivating Question: Can we reduce or even eliminate the need for randomness in the above settings?

There are several reasons for pursuing this research direction. First, essentially all of the applications
of randomness assume that we have a source of perfect randomness — one that gives “coin tosses” that
are completely unbiased and independent of each other. It is unclear whether physical sources of perfect
randomness exist and are inexpensive to access. The sources of randomness our computers can directly
access in practice, such as statistics on mouse movements, clearly contain biases and dependencies. Second,
randomized constructions of useful objects often do not provide us with efficient algorithms for using them;
indeed, even writing down a description of a randomly selected object can be infeasible. For example, for
two parties to use an error-correcting code to communicate, they need to share a short description of the code
that allows them to efficiently perform encoding and decoding. Finally, randomization has become a central
aspect of computation, so our understanding of computation would be incomplete without understanding
the power randomness provides.

Over two decades, an exciting body of research has developed to address the Motivating Question via
a powerful paradigm known as pseudorandomness. This is the theory of efficiently generating objects that
“look random”, despite being constructed using little or no randomness. This body of work has yielded
efficient constructions of various kinds of “pseudorandom” objects. Some of the most important of these
are:

Pseudorandom Generators These are procedures which stretch a short “seed” of truly random bits into
a long string of “pseudorandom” bits which cannot be distinguished from truly random by any effi-
cient algorithm [BM84, Yao82, NW94]. Pseudorandom generators make it possible to automatically
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reduce, and often completely eliminate, the randomness used by any efficient algorithm [Yao82].
Moreover, pseudorandom generators are a fundamental tool in cryptography, and indeed this was the
original motivation for their definition. Many of the problems of private-key cryptography can be
viewed as generating a lot of unpredictable material (for encryption, signing, etc.) from a short, truly
random shared key.

Expander Graphs Expanders are graphs which are sparse but nevertheless highly connected. Such graphs
have been used to address many fundamental problems in computer science, on topics including
network design (e.g. [Pip87, PY82, AKS83]), complexity theory ([Val77, Sip88, Urq87]), derandom-
ization ([NN93, INW94, IW97]), coding theory ([Tan81, SS96, Spi96]), cryptography ([GIL�90]),
and computational group theory ([LP01]). They also have recently been shown to have unexpected
connections with deep questions in pure mathematics ([Gro00]).

Error-Correcting Codes These are methods for encoding messages so that even if many of the symbols
are corrupted, the original message can still be recovered. Originally motivated by the problem of
communicating over a noisy channel [Sha48], they have turned out to have a wide variety of other
applications in computer science. Here we focus on “the highly noisy case,” where there are so many
corruptions that uniquely decoding the original message is impossible, but it is still possible to produce
a short list of possible candidates. Efficient algorithms for this list decoding problem have only been
developed fairly recently [Sud97, GS99], but still they have already found many applications (cf.,
[Sud00]).

Extractors These are procedures which extract almost uniformly distributed bits from a source of biased
and correlated bits, using a small number of truly random bits as a catalyst [NZ96]. Their origi-
nal motivation was to allow us to use randomized algorithms even with imperfect physical sources
of randomness [Zuc96]. In addition to this direct application, they have turned out to have a wide
variety of other applications in computer science, such as leader election [Zuc97, RZ98]; hard-
ness of approximation [Zuc96, Uma99]; cryptography [CDH�00, MW00]; pseudorandom genera-
tors [NZ96, ACR97, RR99, STV01]; and other problems in complexity theory [Sip88, GZ97].

We stress that while we have described all of these objects qualitatively, formally they are each defined
by several parameters and the trade-offs between these parameters are of vital importance in their appli-
cations. For sake of readability, we will avoid getting into the details of these parameters except when
absolutely necessary. We will occasionally refer to the goal of obtaining an ‘optimal’ construction, which in
most cases is an important open problem.

Due to their fundamental nature and wide applicability, each of the above objects has been the center
of a large body of research. Until recently these four bodies of research were largely distinct. While it was
common to use one of them as a tool to construct another (e.g., expander graphs were used to construct
error-correcting codes in [Tan81, SS96, Spi96]), we only recently discovered that these objects are almost
the same when interpreted appropriately. We feel that the new perspective gained through this unification
makes the time ripe for substantial advances in the area. Moreover, these connections mean that progress
on even one aspect of pseudorandomness can propagate and imply improvements throughout the field. With
this in mind, the broad goals of this career development plan are the following:

� Understand more fully and strengthen the connections between these various pseudorandom objects.

� Exploit these connections to attack some of the important open problems in the area.

� Make use of the improved understanding of pseudorandomness to improve and extend its applications
in other areas, such as cryptography, complexity theory, and data structures.
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� Involve students at all levels of the research, from testing potential constructions through computer
experiments, as might be suitable for undergraduates, to the mathematical research suitable for Ph.D.
students.

� Convey the unified theory of pseudorandomness that we are developing to a larger community. This
will be done by developing a new graduate course on the pseudorandomness (with publicly available
lecture notes) and filtering aspects of the theory into undergraduate and graduate courses on related
topics.

Institutional Context. Harvard provides an ideal setting to carry out the above career development setting.
First, the strong core Theory of Computation group will provide a source of stimulation as I explore the
connections of pseudorandomness to other topics. Specifically, I expect to have such interactions with Leslie
Valiant (on circuit lower bounds), Michael Rabin (on cryptography), and Michael Mitzenmacher (on data
structures). I am also likely to interact with members of Harvard’s renowned mathematics department, as
the evidence increases that my work on expander graphs [RVW00] may have significance for deep questions
in algebra (cf., [ALW01, Gro00] and Section 3.1). I may also benefit from the presence of several experts
on error-correcting codes at Harvard, including Michael Mitzenmacher (computer science), Noam Elkies
(mathematics), and Alek Kavcic (electrical engineering). Such connections will be facilitated by the fact
that Computer Science at Harvard is not separated from the rest of the university by the administrative walls
of a department, but is rather part of a larger interdisciplinary structure known as the Division of Engineering
& Applied Sciences.

In addition, the university is very supportive of my career development plans. They provided me with
a generous start-up package that has enabled me to hire an outstanding postdoc, Eli Ben-Sasson, for the
2001–02 academic year. I hope that the funds resulting from this proposal will help me keep Eli at Harvard
for one more year, so we can continue to collaborate on this topic. Harvard has also given me great freedom
in terms of teaching, which I will use to design new graduate and undergraduate courses related to this
proposal (as described in Section 4).

2 Previous Work — The Connections

2.1 Extractors and Pseudorandom Generators

For nearly a decade, work on pseudorandom generators and work on extractors were viewed as orthogonal
directions in the theory of pseudorandomness. This is because, in contrast to extractors, pseudorandom
generators are complexity-theoretic objects. In order to construct them, we make some assumption, like
we have a function � which is hard to compute, and then we construct a pseudorandom generator from
� . Like most work in complexity theory, we only know how to prove the correctness of such a construc-
tion via a reduction. Namely, we show that if we had an efficient algorithm which could distinguish the
output of the pseudorandom generator from truly random, then we could transform it into an efficient algo-
rithm to compute � , contradicting our assumption. In contrast, extractors are information-theoretic objects.
Constructions of extractors make no complexity assumptions, and typically their correctness is proved via
probabilistic arguments rather than reductions.

Despite these apparent differences, Trevisan [Tre99] established a surprising connection between ex-
tractors and pseudorandom generators. He showed that any construction of pseudorandom generators of the
above form (which works using “any” hard function � , and whose correctness is proved by a “black-box”
reduction) is also a construction of extractors, when interpreted appropriately. In a sense, he showed that
extractors are the “information-theoretic analogue” of pseudorandom generators. Using this connection, he
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gave a strikingly simple extractor construction based on the pseudorandom generator construction of Nisan
and Wigderson [NW94], and the parameters of his extractor improved over many previous constructions.

This connection strongly suggests that there should be a single construction which yields both optimal
extractors and optimal pseudorandom generators for most ranges of parameters. However, despite signifi-
cant improvements to Trevisan’s construction by myself and others [RRV99b, ISW00, TUZ01], an optimal
construction has remained elusive.

2.2 Extractors and Expander Graphs

It has been known since the original paper of Nisan and Zuckerman [NZ96] which defined extractors that
an extractor could be viewed as a certain kind of unbalanced, bipartite expander graph, and indeed Wigder-
son and Zuckerman [WZ99] used known constructions of extractors to give constructions of undirected
expander graphs that “beat the eigenvalue bound.” However, in these constructions, the degree of the
graph grows as a function of the number of vertices. Expander graphs of constant degree are of partic-
ular importance, but these were viewed as different and more difficult than extractors. Indeed, the only
known explicit constructions of constant-degree expander graphs relied on sophisticated algebraic tech-
niques [Mar73, GG81, AM85, AGM87, JM87, LPS88, Mar88, Mor94], whereas works on extractors em-
phasized that in contrast they only used “elementary techniques.”

Recently, Omer Reingold, Avi Wigderson, and I [RVW00] pointed out that the connection between
extractors and expanders does indeed extend to the constant-degree case. Specifically, the case of constant-
degree expanders corresponds to case of “high min-entropy” extractors, which is typically viewed as the
easiest range of parameters. We reconciled these contradictory viewpoints (namely, the “difficulty” of
constant-degree expanders and the “easiness” of high min-entropy expanders). Specifically, we gave a
simple construction of nearly optimal high min-entropy extractors, and, by translating the construction and
proof to the setting of expanders, obtained a new construction of constant-degree expanders. These ex-
panders are obtained by starting with a simple “constant size” base expander and repeatedly applying our
new zig-zag graph product to it. The resulting construction is combinatorial (as opposed to algebraic) and
follows a clear intuition; having such a construction of expanders was a long-standing open problem. More
importantly, it gives us a new, powerful way of reasoning about expander graphs using the probabilistic lan-
guage of extractors, and makes several of the open problems about constant-degree expander graphs seem
less daunting.1

2.3 The Use of Error-Correcting Codes

The pseudorandom generator construction of Nisan and Wigderson [NW94] mentioned earlier requires start-
ing with a Boolean function � that is very hard on average. That is, for a random input �, no efficient algo-
rithm can compute ���� much better than random guessing (i.e., the success probability is at most ��� � �,
for small �). In later works, error-correcting codes were used to weaken this assumption to one which just
requires that � is hard in the worst case (i.e., no efficient algorithm can can compute ���� correctly for all
�).

The original idea dates to the work of Babai, Fortnow, Nisan, and Wigderson [BFNW93], who showed
that if we encode a worst-case hard Boolean function � as a low-degree multivariate polynomial �� , then
�� is somewhat hard on average. The reason for this is as follows: if there were an efficient algorithm
� that could correctly compute �� on most inputs, then an efficient decoding algorithm for multivariate

1For example, already in our paper we give a nearly optimal construction of graphs in which every two subsets of density ���
are connected (for constant or slowly growing �); our graphs have degree ��� � ������� �� which is substantially closer to the
slower bound of ��� � ����� than previous constructions (which had degree either growing with the number of vertices [WZ99]
or degree 	���� achieved by Ramanujan graphs [LPS88, Mar88]).
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polynomials [Lip89, BF90] could be used to convert � into an efficient algorithm �� which computes �
correctly everywhere. Unfortunately, using the classical notion of decoding, this does not prove that �� is
sufficiently hard-on-average for the Nisan–Wigderson pseudorandom generator construction. (This argu-
ment only proves that no algorithm can correctly compute �� on most inputs, rather than just slightly better
than random guessing.) Instead, Yao’s XOR Lemma [Yao82] was used to “amplify” the hardness of �� to
the required level, but this introduced inefficiency into the construction, and substantial work was done to
“derandomize” the XOR Lemma and remove these inefficiencies [Imp95, IW97]. In [STV01], Madhu Su-
dan, Luca Trevisan, and I proved that actually the polynomial encoding �� is already as hard-on-average as
needed, by using a list-decoding algorithm for low-degree multivariate polynomials (which was first given
in [AS97], but we also provided a simpler and quantitatively better algorithm). Indeed, this gave an optimal
conversion from worst-case hardness to average-case hardness, and showed that a pseudorandom generator
could be built by just combining an error-correcting code with the Nisan–Wigderson construction.

When Trevisan established his connection between pseudorandom generators and extractors [Tre99],
his extractor construction inherited the same structure — the use of an error-correcting code followed by the
Nisan–Wigderson construction (which actually just projects symbols from cleverly selected positions in the
codeword). Recently, Ta-Shma and Zuckerman [TZ01] showed that this use of error-correcting codes is not a
coincidence — when viewed appropriately, extractors are a generalization of list-decodable error-correcting
codes. This suggests that error-correcting codes should play a more central role in pseudorandom genera-
tor and extractor constructions, and that better constructions may be possible if we exploit the structure of
specific error-correcting codes (such as multivariate polynomials) rather than use the Nisan–Wigderson con-
struction. Remarkably, Ta-Shma, Zuckerman, and Safra [TZS01] recently managed to succeed in building
extractors directly from multivariate polynomial codes, and their proof of correctness proceeds via a (very
nontrivial) generalization of our list-decoding algorithm from [STV01]. Shaltiel and Umans [SU01] have
substantially improved the construction and shown how to also obtain a pseudorandom generator from it.
While these constructions do not improve upon all previous extractor constructions in terms of parameters,
their coding-theoretic approach seems the most promising for ultimately obtaining optimal constructions of
both extractors and pseudorandom generators.

3 Proposed Research

This proposal is about the exciting possibilities raised by the connections described in the previous section.
They signify a deeper understanding of pseudorandomness, that we plan to cultivate over the course of this
research. We believe that, over the next five years, we can use these connections to make significant progress
toward resolving some of important open problems in the area. We will also extend our investigations to
some of the applications of pseudorandomness to other areas such as cryptography and data structures.

Below we give a few examples of specific questions on which we hope to make progress, and sketch
our new approaches for attacking them. We stress that this is not intended to be a comprehensive list of
everything we will do in the course of this work. Rather, this list is intended to give a flavor of the type of
progress we believe we can make with the newly discovered connections in pseudorandomness. As with
any good research, we hope that exciting discoveries will take us in unexpected directions.

3.1 Expander Graphs

We begin by describing research problems about expander graphs which we will address using the connec-
tion between extractors and expander graphs, and in particular, our new zig-zag graph product [RVW00].
Much of the work described below will be done in collaboration with Omer Reingold and Avi Wigderson.
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Constant-Degree Expanders with Near-Optimal Expansion. Earlier, we informally described expander
graphs as sparse graphs that are nevertheless highly connected. Sparsity is typically measured by the degree
of the graph, but there are several different measures of expansion, i.e. how “highly connected” a graph
is. The classical measure, called vertex expansion, requires that there are constants � � � and � 	 �
(independent of the number of vertices) such that for every subset 
 of vertices of density at most �, the
neighborhood of 
 is of size at least � � �
�. � is called the expansion factor of the graph, and the relationship
between � and the degree � of the graph is of fundamental importance. In a random graph, it is known that
� � � � � can be achieved (for some constant � depending on � ). However, explicit constructions have
failed to match this bound. Indeed, it was considered a breakthrough to even have � and � be constants
independent of the number of vertices [Mar73, GG81]. One reason that achieving near-optimal expansion
was elusive is that in almost all of the explicit constructions, the expansion property was proved by bounding
the second largest eigenvalue � of the graph’s adjacency matrix, which was known to imply a lower bound
on the expansion constant � [Tan84]. However, it was shown by Kahale [Kah95] that a bound on � alone is
insufficient to prove that � � ���. This is unfortunate, because many of the computer science applications
of expander graphs require expansion greater than ��� [Spi96, ALM96, BMRS00] (and thus, to date, these
applications have had to remain nonconstructive.)

We believe that, using our new zig-zag graph product, it should be possible to achieve expansion �������
for an arbitrarily small constant �. The reason is that our zig-zag graph product can be analyzed using
several different measures of expansion, some of which are not subject to the � � ��� limitation of the
eigenvalue measure. Specifically, we propose the notion of a min-entropy expander which we proceed to

explain in more detail. The min-entropy of a discrete probability distribution 
 is defined to be ���
�
���
�

	
�� ����
�� ���
 � ���. Thus, if 
 is supported on a set 
, ���
� � 	
�� �
�, with equality iff

 is uniform on 
. Now, for a graph � and a probability distribution � on the vertices of �, let ��
denote the probability distribution induced by selecting a vertex of � according to � and then moving to
a random neighbor of that vertex. We call � a ��� �� �� min-entropy expander if for every distribution �
of min-entropy at most �, the distribution �� is �-close (in statistical difference) to some distribution with
min-entropy ���
� � �. In particular, all sets of size at most �� expand by a factor at least �� � �� � ��.
So, if we construct min-entropy expanders of constant degree � on a growing number � of vertices with
� � 	
�� ������ and � � 	
�� �, then we will have constant-degree expanders with expansion ��� �� � �
for all sets of up to constant density.

This notion of min-entropy expander is a slight generalization of the various notions of “condensers”
recently considered in the extractor literature [RR99, RSW00, TUZ01]. In particular, the observation that
“loss-less” condensers (i.e., min-entropy expanders with � � 	
�� �) are in fact graphs with expansion
�� � ��� is due to [TUZ01]. They actually constructed such graphs for nonconstant degree � � �
	�	
� �.
We hope to obtain a similar result for constant degree � via two steps. First, we need to analyze our zig-
zag-based expander construction in terms of min-entropy expansion. In [RVW00], we analyze the zig-zag
product in two ways: we analyze its effect on the second largest eigenvalue, which essentially measures
how a random walk increases Renyi’s 2-entropy (as opposed to min-entropy); and we analyze its effect on
extraction, which is similar to min-entropy expansion except that distributions of min-entropy at least � are
considered and we ask that �� is �-close to uniform. Since min-entropy expansion is a blend of these two
measures, we are optimistic that the analysis can be translated. Second, in order to actually get expansion
�� � ��� (rather than just ����), we hope to use an idea of Raz and Reingold [RR99], which shows how
hash functions with low collision probability can be used to transform extractors into loss-less condensers.
A direct application of their idea increases the degree of the graph by a �
	�	
� � factor, but we hope that
applying their idea within the zig-zag product, we may be able to only incur a constant factor penalty.
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Further Properties of the Zig-Zag Product. Our zig-zag graph product is novel among graph products
in that it preserves both sparsity and expansion while increasing size. Though our analysis of it in [RVW00]
was already sufficient to give a new construction of constant-degree expanders, there is still much that we
do not understand about it. Below I enumerate just a few of the natural questions that arise:

1. The way we construct an infinite family of constant-degree expanders is to start with a constant-size
base graph � , and then repeatedly apply the zig-zag product, alternating with standard graph oper-
ations such as squaring and tensoring the adjacency matrix. We do not know whether applying the
other graph operations (squaring and tensoring) are really necessary, or just a deficiency in our analy-
sis. Can we get an infinite family of expanders by repeatedly applying just the zig-zag product to some
(or any) base graph �? A positive answer to this question would greatly improve the computational
efficiency of the resulting expanders (neighborhoods can be computed in constant space and linear
time, rather than just polynomial time), which is essential for some applications (e.g., [BGW99]).

2. It is known that the optimal bound on the second largest eigenvalue of an infinite family of degree
� graphs is � � �

�
�� � [LPS88, Mar88, Nil91], and graphs meeting this bound are referred to

as Ramanujan. Using variants of the zig-zag graph product, the best we can currently achieve is
� � �������. Can we construct Ramanujan graphs using some variant of the zig-zag product?2

3. Can we understand the eigenvectors of the zig-zag product in terms of the eigenvectors of the original
graphs, and interpret them combinatorially? Our analysis bounds the second largest eigenvalue. The
eigenvectors themselves can give deeper insight into the effect of the product on expansion.

4. How does the zig-zag graph product (and variants) affect other graph properties such as girth, diame-
ter, chromatic number?

The above questions are particularly appealing from an educational perspective, because computer ex-
perimentation can play a major role in the research. Specifically, undergraduates can write programs to
perform the zig-zag graph product and calculate properties of the resulting graphs (such as the second
largest eigenvalue). Such experiments can help formulate conjectures, which we can subsequently try to
prove (possibly using additional insight gained from the experiment). I believe this is an ideal way to give
undergraduates a gentle introduction to theoretical research. It gives them exposure to difficult theoretical
research questions, while still enabling them to obtain some tangible results (instead of facing the usual
frustration of not knowing where to begin). I intend to actively involve undergraduates in this research, and
in any other aspects of this project where similar opportunities arise.

A Connection to Algebra. As mentioned earlier, one of the original motivations of our work [RVW00]
on the zig-zag graph product was to have a non-algebraic construction of expander graphs. Nevertheless,
subsequent to our work, Alon, Lubotzky, and Wigderson [ALW01] have shown a surprising connection
between the zig-zag graph product and algebra. Specifically, they showed that, under certain algebraic
conditions, taking the zig-zag product of the Cayley graphs of two finite groups �� and �� yields a Cayley
graph for the semidirect product of the groups �� and ��. Using this connection with our analysis of the
zig-zag product, they disproved an earlier conjecture of Lubotzky and Weiss [LW93] which asserted that the
property of a (constant-degree) Cayley graph being an expander depends only on the group (and not on the
choice of generators).

2In the previous section, we argued that the eigenvalue is not an ideal measure of expansion if one is ultimately interested in
vertex expansion, as is often the case. However, bounds on the eigenvalue are in some ways stronger than vertex expansion, and a
significant number of applications of expanders directly make use of the eigenvalue measure.
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Given the importance of expanding Cayley graphs in mathematics (cf., [Gro00, LP01]), this connection
merits a deeper investigation. One hope is that, using with the zig-zag product (or variants), we can construct
infinite families of expanding Cayley graphs with more control over their algebraic structure than permitted
by previous constructions. Perhaps this can even lead to constructions of Cayley graphs of the kind needed
for Gromov’s work on the Baum-Connes conjecture [Gro00].

3.2 Derandomization

One of the primary applications of pseudorandomness is to address the question: Are randomized algorithms
more powerful than deterministic ones? That is, how does randomization trade off with other computational
resources? Can every randomized algorithm be converted into a deterministic one with only a polynomial
slowdown (i.e., does � � ���)? or with only a constant-factor increase in space (i.e., does � � ��)?
Both of these questions have been the subject of a large and exciting body of research, and completely
resolving them seems quite difficult. Still, we believe that we have interesting new approaches that have a
good chance of shedding new light on these important problems.

Derandomization in the Uniform Setting. The only known approach for efficiently converting arbitrary
randomized algorithms to deterministic ones is to construct pseudorandom generators. For time-bounded
algorithms (e.g.,���), we only know how to construct pseudorandom generators based on complexity as-
sumptions. As described in Section 2, pseudorandom generators can be constructed from “hard” functions,
and in this area, “hard” typically means having high circuit complexity. To make the pseudorandom genera-
tor itself computationally efficient, we typically also need to assume that the hard function lies in��� (i.e.,
is computable in exponential time). Since proving unconditional circuit lower bounds for ��� seems well
beyond current techniques, it is natural to ask: Do we really need circuit lower bounds for derandomization?

Impagliazzo and Wigderson [IW98] have given some indication that the answer to this question is NO.
Specifically, they showed that some nontrivial derandomization of ��� is possible merely under the “uni-
form” assumption that ��� �� ���. The heart of their work is to show that if the hard function used has
some additional nice properties — namely “downward self-reducibility” and “random self-reducibility” —
then only uniform hardness is needed. To obtain these properties, they argue that they can assume that their
hard problem is the PERMANENT using lots of machinery (a version of the Karp-Lipton Theorem [KL82],
Valiant’s Theorem [Val79], Toda’s Theorem [Tod91], the ��� characterization of ��� [BFL91]). While
the final theorem is a great result, this two-step proof is dissatisfactory in a couple of ways. The use of all
the machinery makes it less clear why the final result is true. It also causes quantitative inefficiency which
prevents the establishment of a true randomness-time trade-off. For example, their technique does not give
a polynomial-time derandomization of��� under strong enough uniform assumptions (while it is possible
under a strong enough circuit complexity assumption [IW97]). If the quantitative inefficiencies could be
removed, it would also be possible to unconditionally prove something in the spirit of “For every nice func-
tion �, either ��� � ��	��������� or ��	��������� � ���,”3 i.e. all probabilistic time classes
are comparable with ���. Instead, their techniques only imply something like “For every nice function
�, either ��� � ��	������������ or ��	��������� � ���,” which becomes vacuous for many
interesting values of � (e.g. ���� � ��

�

).
In ongoing joint work with Luca Trevisan, we have made progress on resolving these deficiencies.

First, using ideas from the proof of �� � �
���� [LFKN92, Sha92], we can directly exhibit a random
self-reducible and downward self-reducible complete problem for �
����, which eliminates the use
Valiant’s Theorem and Toda’s Theorem from the proof. Second, we have completely solved the quantitative

3This is an oversimplification. For readability, many technical qualifications (e.g. polynomial slackness factors, and inclusions
being only “infinitely-often average-case simulations”) are omitted.
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inefficiencies for a significant part of the pseudorandom generator construction, namely the conversion from
worst-case hardness to average-case hardness (as described in Section 2.3). In order to explain the latter in
more detail, let us recall the idea behind worst-case to average-case conversion based on error correcting
codes. We start out with a worst-case hard function � , and consider its encoding �� in an error-correcting
code. Then we argue that if there were an efficient algorithm which computes �� on average, we could use the
decoding algorithm to obtain an efficient algorithm computing � everywhere. The problem is that in order to
obtain sufficiently hard-on-average problems, we must work with parameters where unique decoding is no
longer possible, and only list decoding is possible. But how do we know which candidate in the “list” is the
correct decoding? In the circuit complexity setting, this is solved by “hard-wiring” that information into the
circuit. To solve this problem in the uniform setting, we first observe that our work in [STV01] actually gives
a uniform algorithm for generating the list of decodings. Next, we observe that the��� characterization of
��� implies that we can assume that the hard function � has a “self-testability” property (cf., [BFL91]),
which we can use to “prune” the list of possible decodings to a single correct candidate which is correct
almost everywhere (and then we can “self-correct” it to make it correct everywhere).

It seems significantly more challenging to extend these ideas to an entire pseudorandom generator con-
struction in the uniform setting, but the progress we have already obtained gives us optimism about our
coding-theoretic viewpoint. Perhaps ideas from the coding-theoretic extractor and pseudorandom generator
constructions of [TZS01, SU01] will help here.

While above we discuss approaches to derandomization without circuit complexity assumptions, an
opposite research direction is to show that circuit complexity assumptions are necessary for some deran-
domization results. The first such theorem was recently obtained by Impagliazzo, Kabanets, and Wigder-
son [IKW01] in the “nondeterministic” setting, who showed that a nontrivial derandomization of �� (a
probabilistic version of
�) is possible if and only if
��� (nondeterministic exponential time) has prob-
lems of high circuit complexity. What about ���? It is well-known that if ��� � � for “promise prob-
lems” then �� can be fully derandomized (cf., [GZ97]), which implies circuit lower bounds for 
���
by the aforementioned result. But does it imply circuit lower bounds for ���? A positive answer would
show that derandomizing ��� is equivalent to proving circuit lower bounds for ��� (since circuit lower
bounds for ��� suffice to derandomize ��� [BFNW93]).

It is interesting that these recent developments on derandomization make essential use of results on
interactive proof systems (such as the ��� characterization of ���). Since I have done a great deal of
research on interactive proofs [SV97, SV99, GSV98, GV99, GSV99, Vad00, Vad00, GVW01], including
my Ph.D. thesis [Vad99], I am in a unique position to work on the interplay between these topics.

Derandomizing Space-Bounded Computation. (This work will be done in collaboration with Omer
Reingold and Ronen Shaltiel.) One of the most basic algorithmic questions is whether connectivity in an
undirected graph can be decided in space��	
� ��. If we allow randomization, the answer is YES [AKL�79],
but for deterministic algorithms it is a long-standing open problem. The main approach to this problem
is through pseudorandom generators against space-bounded algorithms, as initiated in [AKS87, BNS89,
Nis92]. In contrast to the time-bounded case, pseudorandom generators against space-bounded algorithms
can be constructed without making any assumptions. But despite a large body of further work [NZ96,
INW94, SZ99, Arm98, ATWZ00, RR99], the known pseudorandom generators appear insufficient to ob-
tain a deterministic log-space algorithm for undirected connectivity. The best deterministic space bound is
��	
���� �� for undirected connectivity, due to Armoni, Ta-Shma, Wigderson, and Zhou [ATWZ00], and
��	
���� �� for general randomized log-space algorithms, due to Saks and Zhou [SZ99].

The starting point for our research is a pseudorandom generator construction of Impagliazzo, Nisan,
and Wigderson [INW94], as modified by Raz and Reingold [RR99]. Suppose we want a pseudorandom
generator which, from a short seed, generates � bits that look random to any algorithm which runs in space
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. The INW pseudorandom generator is a recursive construction which, at each level, roughly doubles its
output length. Thus, the depth of the recursion is ��	
���. Each level of recursion increases the seed length
by ��
 � 	
������� bits, where � is an error parameter, for a total seed length of ��	
�� � �
 � 	
�������.
In the analysis, the errors accumulate linearly with the number of random bits generated, so we must take
� 	 ���. This gives a total seed length of ���
 � 	
��� � 	
���, which is the same as Nisan’s original
generator.

To do better, argued Raz and Reingold [RR99], we should try to reduce the cost of ��
 � 	
�������
incurred at each level of recursion. They focused on eliminating the increase due to the space 
, and
succeeded in doing so under the additional assumption that weak estimations to the state probabilities of the
space-bounded algorithm can be computed. (This assumption is more or less satisfied by the randomized
log-space algorithm for undirected connectivity.) This yields a pseudorandom generator with seed length
���	
����, which is a substantial improvement when � is significantly smaller than �� .

Our proposal is to focus on the other cost at each level of recursion, namely the ��	
� ���� bits due to
the error parameter �. Before describing our approach, let us see the potential impact. If that cost could be
completely eliminated, the total seed length would be ��
 	
���. At first, this seems to be no better than
���
 � 	
��� � 	
���, because one typically assumes that a space 
 algorithm cannot use more than ��

random bits, for otherwise there are infinite loops. But this is not quite true, since the space bound 
 only
refers to the number of bits stored that depend on the random bits, and does not exclude, for example, a time
counter which prevents infinite loops. In particular, when 
 is constant, a pseudorandom generator with seed
length ��
 	
��� � ��	
��� would imply a full derandomization of read-once constant-width branching
programs, which includes the well-studied special case of constructing discrepancy sets for combinatorial
rectangles [LLSZ97, ASWZ96]. Even more optimistically, if our technique succeeds and could be combined
with the one of Raz and Reingold [RR99], the result could conceivably be an ���	
� ��-space algorithm for
undirected connectivity.

Now we describe our approach to dealing with the ��	
������� cost. The new observation is that the
pseudorandom generator still produces something nontrivial even when � is taken to be, say, ���� 	
����,
rather than ������. Although we cannot prove the output to be pseudorandom, we can prove that each bit
of the output cannot be predicted from the previous bits with probability more than ��� � �� 	
�� by any
space 
 algorithm. Thus we “only” need to convert this mild unpredictability into stronger unpredictability.
A natural approach to doing so is to use Yao’s XOR Lemma [Yao82]: run the generator on � independent
seeds and take the exclusive-OR of the outputs. Intuitively, this should reduce the predictability of each bit to
roughly ������ 	
�� �. There are two problems with this approach. The first is that existing proofs of Yao’s
XOR Lemma typically pay a substantial price in the efficiency of the predictor, whereas we cannot afford
more than a constant-factor loss in the space. To resolve this problem, we hope to exploit a recent work of
Shaltiel [Sha01], in which he proves an XOR Lemma for certain communication complexity problems where
the communication bound increases rather than decreases. Since randomized space-bounded computation
is closely related to communication complexity, there is some hope that the ideas might translate. A second
problem is that, even if the XOR Lemma works out perfectly, the seed length increases by a factor of �, and
we would end up with nothing better than before. To solve this, we would need to derandomize our XOR
Lemma, as has previously been done in the time-bounded case in [Imp95, IW97]. Needless to say, there are
many places this approach can go wrong. Still we feel that it is an interesting one, and there is some chance
that it will yield progress on this important problem.

3.3 Other Connections

As mentioned earlier, pseudorandomness has applications to other areas of computer science, and we expect
our research to naturally branch out into some of these directions. Below we list a few specific possibilities.
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Pseudorandomness in Cryptography. The modern theory of pseudorandomness was actually initiated
by Blum, Micali, and Yao (BMY) [BM84, Yao82] with cryptography in mind. Indeed, the notion of pseudo-
random generator they proposed and its generalization to pseudorandom functions [GGM86] immediately
solves most of the problems of private-key cryptography. The BMY notion of pseudorandom generator has
one important difference from the one we have been discussing for the bulk of this proposal, which was
proposed by Nisan and Wigderson (NW) [NW94]. Namely, the NW definition allows that the pseudoran-
dom generator has a (slightly) greater running time than the algorithms it must fool (which is sufficient for
the application to derandomization), whereas the BMY definition requires that the pseudorandom generator
even fool algorithms that have more running time than the generator (which is essential in cryptographic
applications, and also other applications such as to learning theory [Val84] and limitations on circuit lower
bounds [RR97]).

While the proposed research primarily involves the NW notion of pseudorandom generators and its
connections to other pseudorandom objects, we have hope that the research can be linked back to BMY
notion and cryptography. Indeed, I have done a significant amount of research on cryptography (e.g.,
[GSV98, BHSV98, BGI�01]) and even specifically on pseudorandomness in cryptography [MRV99]. If
a link to the BMY notion can be established, the benefits could go in both directions. One hope is that
some of the ideas that have been developed in this unified theory of pseudorandomness can be used to give
more efficient constructions of pseudorandom generators in the BMY sense. In particular, a long-standing
open problem is to give a more efficient construction of BMY-type pseudorandom generators from any
one-way function; the only known construction is in the celebrated work of Håstad, Impagaliazzo, Levin,
and Luby [HILL99], which is complicated, inefficient, and impractical. In the other direction, a hope is
that Trevisan’s connection between pseudorandom generators and extractors can be extended to use the
BMY construction of pseudorandom generators from one-way permutations (rather than the NW-style con-
structions of pseudorandom generators from hard Boolean functions). To carry this out, we would need
a worst-case to average-case connection for permutations. Specifically, from any permutation � which is
hard to invert in the worst case, can we construct a permutation �� such that �� is hard to invert on average
even for algorithms that have oracle access to �� in the forward direction? Perhaps some generalization of
our coding-theoretic approach to worst-case/average-case conversion for Boolean functions [STV01] can be
made to work.

Randomized Data Structures. Pseudorandomness also turns out to be quite useful in various data struc-
ture problems. For example, tools from pseudorandomness, such as small families of hash functions and
expander graphs, have proven to be useful in constructing data structures for efficiently storing a small set

 of elements from a large universe �� � (cf., [FKS84, BMRS00]). One variant of this problem is the ap-
proximate set storage problem, where the data structure is produced from 
 in a probabilistic manner which
guarantees that for every element � 	 �� � of the universe, the data structure will allow one to determine
whether � 	 
 with some small, controllable error probability (taken over the probabilistic construction of
the data structure). A Bloom Filter [Blo70] is a construction which allows one to save substantially in the
size of the data structure as compared to storing the set exactly (specifically, using ���
�� bits rather than
���
� 	
���). Unfortunately, Bloom Filters, as presented in the literature, are nonconstructive because they
assume access to a completely random hash function, which cannot even be described without exponential
storage. Instead, one should use a small, explicit family of hash functions which can be generated (and hence
stored) using just a few random bits, while still permitting the analysis of Bloom Filters to hold. Doing this
is essentially a derandomization problem, and thus our expertise in pseudorandomness can be very helpful
in finding an optimal solution. We plan to work on this and other problems about randomized data structures
with Michael Mitzenmacher, who has done work on Bloom Filters in the past [Mit01].
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Pseudorandomness and Circuit Lower Bounds. Proving strong circuit lower bounds for natural func-
tions is perhaps the most difficult open problem in computational complexity. Given that proving even
superlinear size lower bounds for general circuits seems well out of reach, researchers have turned to prov-
ing lower bounds on other “easier” resources, such as space (branching program size) and parallel time
(circuit depth). For both of these problems, extractors seem like they could be useful. Consider a random
input to a small-space algorithm. At “most” states of the algorithm, the algorithm “remembers” very little
information about the input and thus the input still has a lot of “randomness” left. Hence, by the definition
of an extractor, the algorithm cannot distinguish the output of an extractor applied to this input from truly
random. This suggests that it may be possible to prove a branching program lower bound for some function
related to extractors. A similar approach also seems compelling for finding an explicit function which can-
not be computed by linear-size log-depth circuits, via Valiant’s work [Val77]. Of course, the above intuition
does not directly work: extractors make use of a short random seed, and the above reasoning does not ap-
ply once the small-space algorithm reads the seed. But still, given our rapidly improving understanding of
extractors, perhaps something along these lines can be made to work.

4 The Educational Component

In addition to helping advance our understanding of computation through research, my career goals also
include sharing exciting ideas in computer science with people outside or just entering the research commu-
nity. For this reason, I intend to make teaching and advising a top priority throughout my career.

A Graduate Course on Pseudorandomness. During the Spring 2002 term, I will teach a new graduate
course at Harvard entitled Pseudorandomness. The course will examine many of the pseudorandom objects
discussed in this proposal — pseudorandom generators, expander graphs, extractors, error-correcting codes
— and their applications in areas such as cryptography, complexity theory, combinatorics, and data struc-
tures. The theory of pseudorandomness has grown into one of the most active research areas in theoretical
computer science with connections to a wide variety of areas, so it is important to make this material acces-
sible to graduate students, and not just those who wish to do research on the subject. However, most of the
relevant material has not made its way into textbooks except in scattered bits. (An exception is the recent
monograph of Goldreich [Gol99], but that is written more survey-style than textbook-style with most details
omitted.) In the past few years, several people at other universities have developed graduate courses on this
topic, but what will make my course unique is the strong emphasis on the unified theory that is developing
via the connections described in Section 2. During the course, we (the students and myself) will produce a
set of lecture notes which I will make publicly available. I expect to teach this course every second or third
year at Harvard, and each time refining the lecture notes and the course itself.

An Undergraduate Course on Cryptography. In the Fall 2001 term, I will introduce the first undergrad-
uate course on cryptography at Harvard, entitled Introduction to Cryptography. Despite the great importance
of cryptography in today’s electronic economy, there are few true cryptography courses for undergraduates
in existence. Most attempts are instead “network security” courses which abandon the modern, rigorous
approach to cryptography that has developed over the past two decades, probably under the assumption that
it is “too difficult” for undergraduates. I disagree with this assumption; I believe that the basic principles
guiding the modern approach (the careful approach to definitions, the meaning of “provable security”) can
be conveyed to undergraduates. Moreover, I believe this is important also for practical reasons. Undergrad-
uate students are ultimately the people who will go into industry and implement cryptographic systems. If
all the dangers of a non-rigorous approach to cryptography remain confined to graduate courses, they will
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never work their way into practice. This is not to say that my course will be an entirely theoretical course.
It will also contain material on how cryptography is actually used (and misused) in practice, and also how
cryptography fits into the larger contexts of network and systems security.

What does this have to do with pseudorandomness? I believe that one way to convey the foundations
of cryptography without a dizzying array of definitions and constructions is to use pseudorandomness as a
common theme tying the different notions together. Specifically, one can begin with private-key encryp-
tion, and introduce pseudorandom generators as a way to generate a “computational” one-time pad from
a short, shared random key (thereby circumventing Shannon’s limitations on information-theoretic secu-
rity [Sha49]). More efficient constructions, based on pseudorandom functions and block ciphers, can be
presented as generalizations of this same principle. Similarly, the Blum-Goldwasser [BG84] construction of
public-key encryption schemes is also based on the same idea. Message authentication can be explained in
terms of unpredictability, which in turn can be presented as a natural weakening of pseudorandomness.

I expect to teach this course for at least several years, until the curriculum has become sufficiently
polished that someone else can easily take over.

Other Courses. When I am not teaching the above courses, I will have opportunities to teach courses on
other areas, e.g. undergraduate courses such as Introduction to the Theory of Computation, Graph Theory
and Combinatorics, or Data Structures and Algorithms, and graduate courses such as Computational Com-
plexity and Cryptography. Some aspect of each of these courses relates to the theory of pseudorandomness,
and I hope to introduce some ideas from pseudorandomness into these courses when I teach them.

Student Involvement in Research. Students will play a major part in the research of this proposal. I plan
to build a group of three or four Ph.D. students, of which I expect to have two working on the research
in this proposal. One student, named Minh Nguyen, has already begun working with me. I also plan
to involve undergraduates in the research, by finding accessible projects for them along the lines of the
computer experiments described in Section 3.1. In September 2001, an outstanding postdoc, named Eli
Ben-Sasson, is coming to Harvard to work with me on pseudorandomness and other topics. During the
2001–02 academic year, I will support him using the generous start-up package provided to me by Harvard.
For the following year (i.e., the first year of this proposal), I budgeted 50% support for him so that he can
stay and continue collaborating with me on this topic. Finally, now that the Theory of Computation group
at Harvard has sufficient size (4-5 active faculty members, 2 postdocs, 4 students in 2001–02), I plan to
organize a weekly Theory of Computation seminar. This will be a forum for me and my students to convey
our work on pseudorandomness to other computer scientists and mathematicians in the Boston area. I will
make an extra effort to recruit women and minorities as Ph.D. students; indeed, my first student (Minh
Nguyen) is a woman.

5 Past Accomplishments

Due to space constraints, I limit myself to describing results from prior NSF support and prior educa-
tional accomplishments, Thus, I do not describe my most of my work on interactive and zero-knowledge
proofs [SV97, SV99, GSV98, GV99, GSV99], including my Ph.D. thesis [Vad99] which won the ACM Doc-
toral Dissertation Award and the MIT EECS Sprowls Award. I also do not describe some of my other work
on pseudorandomness [RRV99b, RRV99a, GVW00], cryptography [BHSV98, MRV99], the complexity of
counting [Vad95, Vad97], and other topics [BFR�98].
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5.1 Results from Prior NSF Support

From September 1999 to December 2000, I was supported by an NSF Mathematical Sciences Postdoctoral
Research Fellowship. That work resulted in the following five publications (all of which were presented at
least once at international conferences, plus at other workshops and universities):

[Vad00] On transformations of interactive proofs that preserve the prover’s complexity (STOC ‘00).
Goldwasser and Sipser [GS89] proved that every interactive proof system can be transformed into a public-
coin one (a.k.a., an Arthur–Merlin game). Their transformation has the drawback that the computational
complexity of the prover’s strategy is not preserved. We show that this is inherent, by proving that the
same must be true of any transformation which only uses the original prover and verifier strategies as “black
boxes.”

[RVW00] Entropy waves, the zig-zag graph product, and new constant-degree expanders and extrac-
tors (FOCS ‘00, with O. Reingold and A. Wigderson). The main contribution of this work is a new
type of graph product, which we call the zig-zag product. Taking a product of a large graph with a small
graph, the resulting graph inherits (roughly) its size from the large one, its degree from the small one, and its
expansion properties from both! Iteration yields simple explicit constructions of constant-degree expanders
of every size, starting from one constant-size expander.

A variant of this product can be applied to extractors, giving the first explicit extractors whose seed
length depends (poly)logarithmically on only the entropy deficiency of the source (rather than its length)
and that extract almost all the entropy of high min-entropy sources. These high min-entropy extractors
have several interesting applications, including the first constant-degree explicit expanders which beat the
“eigenvalue bound.”

[TV00] Extracting randomness from samplable distributions (FOCS ‘00, with L. Trevisan). Recall
that an extractor is a procedure which extracts almost uniform bits from a weak source of randomness (i.e.,
a source of biased and correlated bits). The extraction necessarily uses a small number of additional truly
random bits, which can be eliminated by complete enumeration in some, but not all, applications.

Here we consider the problem of deterministic extraction, i.e. extracting randomness without any extra
truly random bits. Previously, deterministic extraction procedures were known only for sources satisfying
strong independence requirements. In this paper, we look at sources which are samplable, i.e. can be gen-
erated by an efficient sampling algorithm. We seek an efficient deterministic procedure that, given a sample
from any samplable distribution of sufficiently large min-entropy, gives an almost uniformly distributed
output. We explore the conditions under which such deterministic extractors exist.

We observe that no deterministic extractor exists if the sampler is allowed to use more computational
resources than the extractor. On the other hand, if the extractor is allowed (polynomially) more resources
than the sampler, we show that deterministic extraction becomes possible. This is true unconditionally in the
nonuniform setting (i.e., when the extractor can be computed by a small circuit), and (necessarily) relies on
complexity assumptions in the uniform setting. Our uniform extractors are based on a connection between
deterministic extraction from samplable distributions and hardness against nondeterministic circuits, and on
the use of nondeterminism to substantially speed up “list decoding” algorithms for error-correcting codes
such as multivariate polynomial codes and Hadamard-like codes.

[GVW01] On interactive proofs with a laconic prover (ICALP ‘01, with O. Goldreich and A. Wigder-
son). We continue the investigation of interactive proofs with bounded communication, as initiated by
Goldreich and Håstad [GH98]. Let � be a language that has an interactive proof in which the prover sends
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few (say �) bits to the verifier. We prove that the complement �� has a constant-round interactive proof of
complexity that depends only exponentially on �. This provides the first evidence that for 
�-complete
languages, we cannot expect interactive provers to be much more “laconic” than the standard
� proof.

When the proof system is further restricted (e.g., when � � �, or when we have perfect completeness),
we get significantly better upper bounds on the complexity of ��.

[BGI�01] On the (im)possibility of obfuscating programs (CRYPTO ‘01, with B. Barak, O. Goldreich,
R. Impagliazzo, S. Rudich, A. Sahai, and K. Yang) Informally, an obfuscator 
 is an (efficient, prob-
abilistic) “compiler” that takes as input a program (or circuit) � and produces a new program 
�� � that
has the same functionality as � yet is “unintelligible” in some sense. Obfuscators, if they exist, would have
a wide variety of cryptographic and complexity-theoretic applications, ranging from software protection to
homomorphic encryption to complexity-theoretic analogues of Rice’s theorem. Most of these applications
are based on an interpretation of the “unintelligibility” condition in obfuscation as meaning that 
�� � is
a “virtual black box,” in the sense that anything one can efficiently compute given 
�� �, one could also
efficiently compute given oracle access to � .

In this work, we initiate a theoretical investigation of obfuscation. Our main result is that, even under
very weak formalizations of the above intuition, obfuscation is impossible. We prove this by constructing a
family of functions � that are inherently unobfuscatable in the following sense: there is a property � � � �

�� �� such that (a) given any program that computes a function � 	 � , the value ���� can be efficiently
computed, yet (b) given oracle access to a (randomly selected) function � 	 � , no efficient algorithm can
compute ���� much better than random guessing.

5.2 Educational Accomplishments

I first discovered the rewards of teaching while an undergraduate at Harvard, where I was a teaching assistant
for eight different courses in mathematics and computer science. Each of these courses involved teaching
weekly sections, which I strove to make as engaging and useful to the students as possible. My hard work
paid off in the satisfaction and success of my students, and I was awarded two Certificates of Distinction in
Teaching based on the student evaluations of my teaching.

During the Summer 2000, I co-taught an intensive course entitled “Randomness and Computation” at
the Summer Session on Computational Complexity Theory run by the Institute for Advanced Study and Park
City Math Institute. The topics we covered were probabilistic proof systems and pseudorandomness. This
proved to be an excellent opportunity to disseminate the exciting results in my areas of interest to a wider
community, since the Summer Session attendees included high school teachers, undergraduates, graduate
students, and active researchers in the mathematical sciences.

Although my teaching responsibilities at Harvard have not yet begun, I have already started working
with a number of students. In addition to numerous informal discussions with students, I am supervising two
theses for graduating seniors, I have supervised a sophomore doing an independent study in cryptography,
and I have started working with my first Ph.D. student, Minh Nguyen.

I have also presented many papers at conferences such as FOCS, STOC, and CRYPTO, and I have
also been given invited lectures at a number of universities, industrial research labs, and workshops. I will
give an invited survey talk on pseudorandomness at the upcoming RANDOM conference in Berkeley, CA
(Aug. 2001). Some workshops at which I have given invited presentations in the past include: DIMACS
Workshop on Randomization Methods in Algorithm Design (Dec. 1997), Fields Institute Workshop on Inter-
active Proofs, PCP’s, and Fundamentals of Cryptography (May 1998), Oberwolfach Meeting on Complexity
Theory (Nov. 1998), DIMACS Workshop on Pseudorandomness and Explicit Combinatorial Constructions
(Oct. 1999), Oberwolfach Meeting on Complexity Theory (Nov. 2000).
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80, 1973.

[Mar88] G. A. Margulis. Explicit group-theoretic constructions of combinatorial schemes and their ap-
plications in the construction of expanders and concentrators. Problemy Peredachi Informatsii,
24(1):51–60, 1988.

[MW00] Ueli Maurer and Stefan Wolf. Information-theoretic key agreement: From weak to strong
secrecy for free. In Bart Preneel, editor, Advances in Cryptology—EUROCRYPT 00, volume
1807 of Lecture Notes in Computer Science. Springer-Verlag, 24–28 May 2000.

[MRV99] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In Proceedings of
the 40th Annual Symposium on the Foundations of Computer Science, New York, NY, October
1999. IEEE.

[Mil76] Gary L. Miller. Riemann’s hypothesis and tests for primality. Journal of Computer and System
Sciences, 13(3):300–317, 1976. Working papers presented at the ACM-SIGACT Symposium
on the Theory of Computing (Albuquerque, N.M., 1975).

20



[Mit01] Michael Mitzenmacher. Compressed bloom filters. In Proceedings of the 20th Annual Sympo-
sium on Principles of Distributed Computing. ACM, August 26–29 2001. To appear.

[Mor94] Moshe Morgenstern. Existence and explicit constructions of 	 � � regular Ramanujan graphs
for every prime power 	. J. Combin. Theory Ser. B, 62(1):44–62, 1994.

[NN93] Joseph Naor and Moni Naor. Small-bias probability spaces: Efficient constructions and appli-
cations. SIAM Journal on Computing, 22(4):838–856, August 1993.

[Nil91] A. Nilli. On the second eigenvalue of a graph. Discrete Math., 91(2):207–210, 1991.

[Nis92] Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

[NW94] Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Computer and System
Sciences, 49(2):149–167, October 1994.

[NZ96] Noam Nisan and David Zuckerman. Randomness is linear in space. Journal of Computer and
System Sciences, 52(1):43–52, February 1996.

[Pin73] M. Pinsker. On the complexity of a concentrator. In 7th Annual Teletraffic Conference, pages
318/1–318/4, Stockholm, 1973.

[PY82] N. Pippenger and A.C. Yao. Rearrangeable networks with limited depth. SIAM J. Algebraic
and Discrete Methods, 3:411–417, 1982.

[Pip87] Nicholas Pippenger. Sorting and selecting in rounds. SIAM Journal on Computing, 16(6):1032–
1038, December 1987.

[Rab80] Michael O. Rabin. Probabilistic algorithm for testing primality. Journal of Number Theory,
12(1):128–138, 1980.

[RR99] Ran Raz and Omer Reingold. On recycling the randomness of the states in space bounded
computation. In Proceedings of the Thirty-First Annual ACM Symposium on the Theory of
Computing, Atlanta, GA, May 1999.

[RRV99a] Ran Raz, Omer Reingold, and Salil Vadhan. Error reduction for extractors. In Proceedings of
the 40th Annual Symposium on the Foundations of Computer Science, New York, NY, October
1999. IEEE.

[RRV99b] Ran Raz, Omer Reingold, and Salil Vadhan. Extracting all the randomness and reducing the
error in Trevisan’s extractors. In Proceedings of the 31st Annual ACM Symposium on Theory of
Computing, pages 149–158, Atlanta, GA, May 1999. ACM. Invited to special issue of Journal
of Computer and System Sciences.

[RR97] Alexander Razborov and Steven Rudich. Natural proofs. Journal of Computer and System
Sciences, 55(1):24–35, 1997.

[RSW00] Omer Reingold, Ronen Shaltiel, and Avi Wigderson. Extracting randomness via repeated con-
densing. In 41st Annual Symposium on Foundations of Computer Science, Redondo Beach,
CA, 17–19 October 2000. IEEE.

21



[RVW00] Omer Reingold, Salil Vadhan, and Avi Wigderson. Entropy waves, the zig-zag graph product,
and new constant-degree expanders and extractors. In Proceedings of the 41st Annual Sympo-
sium on Foundations of Computer Science, pages 3–13, Redondo Beach, CA, 17–19 October
2000. IEEE. Journal version accepted to Annals of Mathematics (subject to minor revisions).

[RZ98] Alexander Russell and David Zuckerman. Perfect information leader election in ���� �� 
���

rounds. In 39th Annual Symposium on Foundations of Computer Science, Palo Alto, California,
8–11 November 1998. IEEE.

[SV97] Amit Sahai and Salil Vadhan. A complete promise problem for statistical zero-knowledge. In
Proceedings of the 38th Annual Symposium on the Foundations of Computer Science, pages
448–457, Miami Beach, FL, October 1997. IEEE.

[SV99] Amit Sahai and Salil Vadhan. Manipulating statistical difference. In Panos Pardalos, Sanguthe-
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