Proposal Summary

Over the past few decades an uncomfortable truth has set in that worst case analysis is not the
right framework for studying machine learning: every model that is interesting enough to use in
practice leads to computationally hard problems. The goal of the PI's research agenda is to move
beyond worst case analysis. This involves formalizing when and why heuristics — such as alternating
minimization and Gibbs sampling — work as well as designing fundamentally new algorithms for
some of the basic tasks in machine learning. This project has already had a number of successes
such as provable algorithms for nonnegative matriz factorization, topic modeling, learning mixture
models, tensor decomposition, dictionary learning and independent component analysis. In this
proposal, the PI will highlight four inter-related projects that significantly advance this research
agenda:

e Alternating minimization is a popular heuristic for minimizing certain types of non-convex
functions. The PI proposes to view it instead as trying to minimize an unknown convex
function given an approximation to its gradient. This suggests a new set of questions, whereby
tools from optimization could lead to faster and more sample efficient algorithms for dictionary
learning and offer valuable insights into how these tasks are accomplished in nature.

e The PI will investigate inference in Bayesian networks, where we only know of provable
algorithms in quite limited settings. In contrast, Gibbs sampling is widely successful, but has
defied theoretical explanation. The PI will use recent probabilistic tools from the constructive
proof of the local lemma to analyze Gibbs sampling and offer insights into why it works.

e One of the major recent advances in machine learning is the development of a broad range of
algorithms for linear inverse problems. But there are important gaps in our understanding
for problems such as tensor completion. The PI will design new algorithms for it that utilize
higher levels of the sum-of-squares hierarchy and need many fewer observations.

e The PI will explore the application of semi-random models to machine learning and extend
existing algorithms to work in this challenging setting. Such algorithms would likely be more
robust to distributional assumptions, and generalize to a broader range of domains.

These projects all involve expanding the reach of theory into areas where there is a serious gap in
our current understanding, and will open up new avenues for further exploration.

Intellectual Merits This work will lead to more efficient algorithms for basic machine learning
problems, and these algorithms will come with provable guarantees on their performance. This work
has the potential to have a major impact on theory and practice by introducing new problems and
agendas to theory as well as developing new tools for reasoning about why these algorithms work in
practice. And as an additional benefit, it will further contribute to our burgeoning understanding of
alternating minimization, graphical models, semi-random models and the sum-of-squares hierarchy.

Broader Impact This program could develop into a central area of focus in theoretical computer
science, and lay the groundwork for many more fruitful collaborations between theory and machine
learning. This project will involve training the next wave of students, and equipping them with the
necessary tools to work in this area. Additionally, the PI plans to continue his outreach activities
designed to facilitate communication between theory and practice. This involves giving tutorials,
and introducing practitioners to the latest algorithmic developments, as well as teaching a graduate
seminar and creating new course materials on modern machine learning models, most of which are
not currently studied within theory.
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1 Introduction

Algorithms and complexity are the theoretical foundation and backbone of machine learning. Yet
there is a large divide between theory and practice because the optimization problems that arise
in machine learning are in large part solved using heuristics that have no provable guarantees. To
elaborate, a machine learning system is composed of a model and an algorithm and we have many
rich models that describe aspects of the world around us — e.g. Judea Pearl recently won the A.M.
Turing Award in large part for introducing Bayesian networks for modeling causal relationships (see
Section 2.4). But a model is no good without an algorithm to determine how to set its parameters
or to perform inference. Those same aspects that make a model appealing — that it is general
enough to describe many interesting processes — also seem to come hand in hand with optimization
problems that are N P-hard or worse!

Over the past few decades an uncomfortable truth has set in that worst case analysis is not
the right framework for studying machine learning: every model that is interesting enough to use
in practice leads to computationally hard problems. The goal of our research agenda is to move
beyond worst case analysis. This involves two complementary directions. Firstly, can we formalize
when and why heuristics — such as alternating minimization and Gibbs sampling — work? The hope
is that if we can analyze heuristics instead of dismissing them, we can add something new and
surprising to our algorithmic toolkit. Secondly, can we design fundamentally new algorithms for
some of the basic tasks in machine learning? As we will see, there is a rich set of tools available
from theory that are a natural fit for some of the outstanding problems in machine learning.

This project has already had a number of successes such as provable algorithms for nonneg-
ative matriz factorization [AGK112], topic modeling [AGM12, AFH" 12|, learning mixture models
[KMV10, MV10, BS10], tensor decomposition [BCM™14], dictionary learning [AGM14, AAJT14]
and independent component analysis [AGM112, GVX14]. This line of work not only gave new
algorithms for well-studied problems, but in many cases it significantly contributed to our under-
standing of what are the right instances of these problems to study. In this proposal, we will
highlight four inter-related projects that significantly advance this research agenda:

e Alternating minimization is a widely used heuristic for minimizing certain types of non-
convex functions. We can analyze its performance in some settings (e.g. for matrix completion
[JNS13, Hal4]) but for others it remains a mystery. We propose instead to view it as trying to
minimize an unknown convex function given an approximation to its gradient. This suggests
an interesting, new set of questions, whereby tools from optimization could lead to faster and
more sample efficient algorithms for dictionary learning and other related problems. Moreover,
this framework can be used to analyze even simpler variants of alternating minimization that
have been proposed in the neuroscience community [OF97, LS00], and would offer the first
algorithmic explanation of how these tasks are accomplished in nature. The research proposed
here will serve as a bridge between two disparate communities and foster new collaborations.
See Section 2.3.

e A Bayesian network compactly encodes a joint probability distribution in high dimensions;
such networks are ubiquitous in modern machine learning. The basic task is to perform



inference — we want to update our beliefs about the latent variables based on our observations.
Gibbs sampling is widely successful in practice, but has defied theoretical explanation. The
research proposed here will leverage recent probabilistic tools from the constructive proof of
the local lemma [MT10, HSS11] to analyze Gibbs sampling and offer new insights into why
it works, finally moving beyond the crutch of assuming that the underlying graph has low
tree-width. See Section 2.4.

e One of the major advances in machine learning in recent years is the development of a broad
range of algorithms for linear inverse problems through semidefinite programming. The
most famous example is matriz completion [CR08]. However in many cases the natural
relaxation (based on the atomic norm [CRP112]) is itself hard to solve and introduces a new
source of difficulty. This is the case for tensor completion which is a natural generalization that
touches on an important issue: To what extent does adding additional structure to an inverse
problem make it information theoretically easier — in the sense that we need fewer samples
— but computationally more difficult to utilize the higher-order structure? This particular
problem turns out to be related to the quantum separability problem [BCY11] and suggests
an approach for rounding higher levels of the sum-of-squares hierarchy to give algorithms for
tensor completion that need many fewer observations. See Section 3.2. See also Section 4.1
for further background on tensors and their use in statistics and learning.

e Semi-random models have great explanatory power and are an elegant model originating
from theoretical computer science [BS95], [FK01] that sits between worst-case and average-
case analysis. These models have not been used in the context of learning, although they are
a natural fit, and can help address a foundational question: Are algorithms that we prove
to work under various distributional assumptions in fact over-exploiting statistical properties
of the instances they are given? We plan to extend existing learning algorithms — such as
alternating minimization for matrix completion — to work in this more challenging setting.
Such algorithms would likely be more robust to distributional assumptions, and would have
a better chance of succeeding across a broad range of application areas. See Section 4.2.

Together, these projects would expand the reach of theory into a number of areas where there
is a serious gap in our current understanding. In particular, it would make new connections be-
tween alternating minimization and approximate gradient descent, leverage modern probabilistic
tools [MT10, HSS11] to analyze Gibbs sampling, connect tensor completion and quantum com-
plexity, and rethink the standard distributional models used in machine learning. This proposal
cuts across several areas of computer science and applied mathematics and has the potential to
enrich these areas by building new bridges between them. I will also describe my previous research
accomplishments that are most relevant to this proposal — in particular, nonnegative matrix fac-
torization (Section 2.1), topic modeling (Section 2.2), learning mixture models (Section 3.1) and
tensor decomposition (Section 4.1).

The intellectual merits of this proposal are described above, and its broader impact will be
achieved in two ways. Firstly, we will integrate the research activities with an education plan that
will create new graduate and undergraduate courses and train the next wave of students, equipping
them with the necessary tools to work in this area (Section 6.2). I recently wrote a monograph
based on my graduate seminar that is freely available on my website and has already served as
a valuable reference both within MIT and at other universities, and I plan to expand this into a
textbook. More broadly, I have participated in a number of programs that are specifically designed
to encourage students from underrepresented groups to pursue computer science (Section 5).

Secondly, this proposal will foster connections between theoretical computer science, machine
learning, statistics and signal processing, and bring new perspectives and new agendas into these



fields. Many of the models and heuristics used in machine learning have been for the most part
unexplored by theory. This work has the potential to set new directions in theory as well as lead us
to a new understanding of when various heuristics work and where they should be applied. Moreover
we expect that some of the algorithms developed in this proposal will lead to better algorithms in
practice too. Finally, the projects in this proposal will offer us an opportunity to rethink some of
the statistical foundations of machine learning and signal processing, and will contribute important
new estimators that can be used in place of the maximum likelihood estimator and have provable
algorithms to compute them. These projects cut across many areas, and have the potential to build
exciting new bridges between them.

We will organize this proposal into a three-front attack on intractability in machine learning and
related issues. In Section 2 we describe an approach based on leveraging structural assumptions
to get around known hardness results. In Section 3 we suggest ways to analyze new estimators in
cases where the standard ones are hard to compute. And in Section 4 we explore various models
in between worst-case and average-case analysis in the context of machine learning.

2 Representation Learning and Inference

Often we can get around known intractability results by introducing structural assumptions that
are motivated by applications. Indeed we got around N P-hardness [Va09] and fixed-parameter
intractability results [AGK™'12] in nonnegative matrix factorization (Section 2.1) and N P-hardness
results for computing the maximum likelihood estimator [AGM12] in topic modeling (Section 2.2)
through the notion of separability [DS03]| and gave new algorithms that have already had an impact
on practice. In future work, we will analyze alternating minimization on incoherent dictionaries
and we discuss the implications of this project for neuroscience (Section 2.3). Also in future work,
we propose to analyze Gibbs sampling on bipartite Bayesian networks and we believe that the right
assumptions in this context involve its parameters and not its topology (Section 2.4).

2.1 Prior Work: Nonnegative Matrix Factorization

Nonnegative matriz factorization is a fundamental problem in linear algebra which has a rich
history spanning quantum mechanics, probability theory, data analysis, polyhedral combinatorics,
communication complexity, demography, chemometrics, etc (see references in [AGK*12]). In this
problem, the input is an entry-wise nonnegative matrix M € R™*™ and an integer » > 0 and
the goal is to write M as the product of A € R™*” and W € R™" where these are entry-wise
nonnegative matrices too. In the past decade, this problem has become enormously popular in
machine learning. Due to space limitations we will not describe the full range of its applications in
detail, but will instead focus on applications to text analysis to illustrate the main ideas.

A grand challenge in machine learning is to design automated tools to organize and reason
about large collections of documents; a number of foundational papers have suggested that we
think of documents as each being described as a convex combination of “topics” which in turn
are distributions on words [PRT*00, Hof99]. This is precisely the nonnegative matrix factorization
problem since we can interpret the columns of A as topics, and the columns of W as a representation
of each document as a convex combination of topics. (after an appropriate renormalization) In
this way, the goal is to extract latent relationships in the data by solving nonnegative matrix
factorization.

Unfortunately nonnegative matrix factorization is N P-hard [Va09], and even worse Arora, Ge,
Kannan and the PI proved that this problem is fixed parameter intractable [AGK'12]. However



one of the most important contributions of this work was in providing a path to move beyond worst
case analysis. To this end, we studied the separability condition, which was introduced in [DS89]
and is believed to hold in a number of natural settings. In the example above it has a simple
interpretation: we require that for each topic there is an unknown word called an anchor word that
is a strong indicator for the given topic. For example, consider the word “401k”. There are certainly
many articles about “personal finance” that do not contain this word. Yet when “401k” does occur
in an article it gives a strong indication that the article is at least partially about “personal finance”
and so we call it an anchor word. We proved that there is a polynomial time algorithm to find
anchor words and used this to give an efficient algorithm for nonnegative matrix factorization when
A is separable. This gave the first algorithm for nonnegative matrix factorization that provably
works under a non-trivial condition on the input. This research direction has since been taken up
by a number of researchers who have sought even faster and more practical algorithms and has
spurred many collaborations across theory and machine learning [BRR 12, KSK13, GV14, ZBG14].

2.2 Prior Work: Topic Models

Topic modeling is closely related to nonnegative matrix factorization, but it has an important
stochastic twist [PRT100, Hof99, BNJ03, Bl12]. The difference is that we assume there is a distri-
bution that generates the columns of W and moreover even though a document is associated with
a distribution over words, what we actually observe is not the full distribution but a rather samples
from it. When the length of a typical document is much shorter than the number of terms in the
vocabulary, these can be quite different. The question is: Can we still give provable algorithms
that work in the presence of such sparse and incomplete data?

In [AGM12], Arora, Ge and the PI used the separability assumption to give a provably correct
algorithm for learning the parameters of a topic model to any accuracy. Most approaches for
topic modeling are based on the singular value decomposition, however what we are trying to
compute in this context is necessarily a nonnegative matrix and our work was the first to leverage
nonnegative matrix factorization as the main tool. Moreover ours was the first algorithm that
provably works for correlated topic models, which are much more realistic and versatile models
in practice [BLO7, LMOT7]. These algorithms are theoretically appealing (due to their generality)
and in fact turn out to be highly practical. In [AGH"13], the PI and collaborators gave a highly
efficient implementation of these algorithms, and tested it against state-of-the-art topic modeling
toolkits such as MALLET with the help of one of the maintainers of this package. The experiments
showed that this algorithm runs a hundred times faster than previous approaches, while producing
better quality topics according to a variety of metrics that have been suggested in the topic modeling
community. This is an auspicious example where new models can lead to new theoretical questions,
and ultimately much better performance in practice.

2.3 Research Direction: Dictionary Learning via Alternating Minimization

Sparse representations play an essential role in many fields including statistics, signal processing
and machine learning [E110, Ma98]. But can we efficiently learn an unknown basis that enables
a sparse representation, if one exists? This problem is usually called either dictionary learning
or sparse coding and it is a problem of central importance. Algorithms for this task often serve
as a tool for feature extraction and ultimately a building block for more complex tasks such as
classification, compression, segmentation and de-noising. More recently, it has also been used in
some deep learning architectures [RBLO7].

In the usual stochastic model there is an unknown dictionary A € and our goal is to
learn A from random examples of the form Y; = AX; where X; has at most k non-zeros and is
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chosen from an appropriate distribution. This is a natural stochastic generalization of the classic
sparse recovery problem in which we are given both Y; and A and our goal is to find X; [DS89,
DH99, DE03, GN03, Do06, CRT06]. Moreover in sparse recovery we impose conditions on A that
ensure X; is the uniquely sparsest solution to the linear system Y; = AX;. The twist here is that in
dictionary learning we do not have the luxury of knowing A or choosing it; we have to discover it.

The standard approach in practice is alternating minimization where the general idea is to
maintain a guess for both A and the representations {X;} and at every step either update {X;}
using an algorithm for sparse recovery or update A by, say, solving a least-squares problem [AEB06,
EAH99]. However why these approaches work so well is still a mystery — they are usually derived as
a heuristic for minimizing some non-convex function. Recently a number of researchers have sought
new algorithms — with provable guarantees — for dictionary learning. Spielman, Wang and Wright
gave an algorithm that works provided A has full column rank and k ~ ©(y/m) [SWW12]. Recall
that k£ is the number of non-zeros in X;. However this does not encompass the usual applications
of dictionary learning where we set m to be much larger than n because it allows us to work with
a much richer family of signals. This is called the overcomplete case.

Recently, Arora, Ge and the PI and independently Agarwal, Anandkumar, Jain, Netrapalli and
Tandon gave the first provable algorithms that work in the overcomplete setting [AGM12, AAJT14].
These algorithms work for u-incoherent dictionaries where the columns of A; are unit vectors and
(Aiy A;) < p/y/n for all i # j. In fact, ours works up to k = O(y/n/u) which is the information
theoretic threshold for sparse recovery [DS89, DH99, DE03, GN03]. We remark that the algorithms
in [AGM12, AAJ"14] both make use of alternating minimization, but do so only after they already
have an estimate that is extremely close to the true dictionary. Subsequently, Barak, Kelner and
Steurer gave an algorithm utilizing the sum-of-squares hierarchy that allows nearly linear sparsity
[BKS14Db].

However there is still a wide gap in our understanding. In principle, alternating minimization
itself could work from weak starting conditions and provide an algorithm that achieves the best
of all of these worlds in terms of the sparsity it can tolerate, how rapidly it converges to the true
dictionary and its sample complexity. Often, though, one needs the right initialization procedure
to get it started:

Question 1. Is there a wvariant of alternating minimization (coupled with a good initialization
procedure) that provably works from a weak starting condition?

The usual derivation for alternating minimization is to start with some non-convex energy
function that we would like to minimize, such as the reconstruction error

p
B(A, X)) =) Vi — AX)|
1=1

vzhere we impose the constraint that each X; is k-sparse. If we knew the X;’s then we could set
X; = X; and the above energy function would be convex. Moreover we could compute its gradient
with respect to A and take a step in that direction. This is obviously a cheat because the whole
point is to learn the X;’s in the first place.

The key point is that this is still the right way to think about alternating minimization and we
should think of it as trying to minimize an unknown convex function F(A, X;). Instead we have
access to the gradient of £ (Z, )N(Z) with respect to A which we hope should be a good enough proxy
for us to minimize it.

Question 2. Is there a general connection between alternating minimization and approximate gra-
dient descent?



There seem to be many important questions to explore here: if we have access to an approximate
oracle for the gradient of a convex function, what are the minimal conditions we need to prove that
we converge to something close to its minimum?

Finally, let us turn to neuroscience. Historically, dictionary learning was introduced in a foun-
dational paper of Olshausen and Field [OF97] who considered applying it to a collection of natural
images. They discovered that (in contrast to principal component analysis) it finds a relatively in-
terpretable basis that shares many qualitative properties with the receptive field in the mammalian
visual cortex. It is by now widely accepted that sparse representations play a key role in neural
coding. But how is dictionary learning accomplished in nature?

Question 3. Are there neurally plausible algorithms for dictionary learning?

The term neurally plausible is itself not precisely defined anywhere in the literature but appears
in many places [OF97, Sel4]. Indeed there are variants of alternating minimization that make
use of only very simple operations such as matrix-vector products and thresholding. All of these
operations are believed to be implementable by groups of neurons, and so if we could analyze
it this would give us the first neurally plausible algorithms for dictionary learning with provable
guarantees. This would introduce tools from theoretical computer science and optimization into
neuroscience would suggest that non-convexity need not be a hurdle to a rigorous mathematical
theory of neural computation. It would also pave the way for more interaction between algorithms
researchers and neuroscientists. This section is based on ongoing discussions with Sanjeev Arora,
Rong Ge and Tengyu Ma.

2.4 Research Direction: Inference in Bayesian Networks

Judea Pearl recently won the A. M. Turing Award for introducing Bayesian networks and de-
veloping their mathematical foundations [Pe88]. These networks have become a mainstay in
robotics, computer vision, computational biology, natural language processing and many other
fields [KF09, JB02] and have changed the way we approach reasoning in uncertain environments.
There are by now countless surveys, workshops and courses dedicated to this topic and yet we are
sorely lacking in algorithms with provable guarantees.

Formally, a Bayesian network is a directed acyclic graph G = (V, E) where we associate a
random variable with each node; the key property is that the value at any particular node is
conditionally independent of all the other nodes once its parents are fixed. Hence once we fix the
topology, we only need to specify the conditional distribution for each node for each configuration
of values for its parents. For a more thorough discussion see [KF09, JB02]. In this way, a Bayesian
network compactly describes a high-dimensional joint probability distribution. Moreover we can
make use of both causal (from cause to effect) and diagnostic (from effect to cause) reasoning once
we are working with probabilities, and this is what distinguishes it from some of the rule-based
systems it has supplanted. To be concrete, we will use the Quick Medical Reference (QMR-DT)
model as a running example. This is a large bipartite Bayesian network where each node represents
either a symptom or a disease. Additionally, each symptom is the weighted noisy-or of some set of
diseases. This is one of the most important Bayesian networks and its parameters were hand-tuned
by experts and took the equivalent of fifteen man-years of work!

One of the central problems is to take some given Bayesian network (like the one above) and
perform inference — we want to update our beliefs about the latent variables based on our observa-
tions so that we can make predictions. Unfortunately, all of the known algorithms work in limited
settings. There are algorithms such as belief propagation [Pe82] and the junction tree algorithm that
work when the underlying graph has low tree-width. There are also approaches based on rejection



sampling that work in a range of parameters where you could accomplish almost the same task by
ignoring the Bayesian network altogether [DLI7].

Question 4. Are there provable algorithms that work on interesting families of Bayesian networks
with large tree-width?

Almost all interesting Bayesian networks — including QMR-DT — have large tree-width. It is a
crutch to focus on graphs with low tree-width since it effectively gives up on doing anything more
interesting than dynamic programming.

Arguably the most successful algorithm in practice is Gibbs sampling [GG84], which has defied
theoretical explanation. The basic strategy is to design a Markov chain in such a way that its
steady-state distribution is exactly the posterior distribution on the latent variables we want to
compute. We can think of the random walk as exploring the peaks and valleys of some implicitly
defined energy function. Some energy functions are easy to get stuck in — for example, ones with
many deep modes. The QMR-DT network is a natural starting point for exploring these issues,
and we plan to study how the parameters of the network influence the behavior of Gibbs sampling.
See also [HS13, JHS13] for work on fitting the parameters of some classes of noisy-or networks.

Question 5. Does Gibbs sampling miz rapidly for noisy-or networks?

Markov chain Monte Carlo (MCMC) algorithms have been successfully analyzed in a number of
settings in approximate counting, most notably the work of Jerrum, Sinclair and Vigoda on approx-
imating the permanent [JSV04]. But applications in machine learning seem to require genuinely
new sorts of tools.

We can take inspiration from the recent progress on constructive versions of the local lemma
[MT10] and use this work to give a proof of concept for some of the research directions that we
proposed here. In particular let us take a k-SAT formula ¢ with the right regularity conditions so
that a satisfying assignment is guaranteed to exist using the local lemma. Moreover, there are many
such examples where a random assignment is extremely unlikely to satisfy ¢ and so using rejection
sampling to find one would not work. We can construct a (highly artificial) Bayesian network
where the observed nodes represent the clauses and the hidden nodes represent the variables. Note
that its topology is in general quite complex. Nevertheless, there are efficient algorithms based on
setting up an appropriate Markov chain that generate a satisfying assignment [MT10].

Question 6. Are there efficient algorithms for sampling a uniformly random satisfying assignment
of ¢, provided that it meets the conditions of the local lemma?

The best algorithms can generate a random satisfying assignment from a distribution that satisfies
certain marginal constraints that the uniform distribution on satisfying assignments also satisfies
[HSS11]. But this falls short of answering the above question, which is natural in its own right.
Moreover the above question would be an important stepping stone towards analyzing Gibbs sam-
pling more generally on bipartite Bayesian networks where one layer represents observed variables
and the other represents latent variables. In such cases, one can think of the observations as
defining soft constraints and the hope is that many of the intuitions that hold in the constraint
satisfaction case (where there are hard constraints) should carry over. This section is based on
ongoing discussions with Sam Eldar, David Karger, Jonathan Kelner and David Rolnick.

3 Method of Moments

In many learning problems, the moments of a distribution can be used to construct good estimators
in cases where the natural one is hard to compute. Indeed, this is the case for mixtures of Gaussians



where it was known that computing the maximum likelihood estimator is APX-hard [AKO05] and
we gave an alternate estimator based on the method of moments that yielded the first polynomial
time algorithm that works even when the components almost entirely overlap [KMV10, MV10]
(Section 3.1). We face a similar difficulty for the tensor completion problem where the natural
convex program [CRPT12] is hard to compute. We propose to round the natural sum-of-squares
relaxation (which places constraints on a distribution through its moments) using connections to the
quantum separably problem. This would yield better algorithms that need many fewer observations
(Section 3.2).

3.1 Prior Work: Learning Mixtures of Gaussians

Mixtures of Gaussians are ubiquitous in learning and statistics and are used whenever data is
believed to be generated from multiple sources (see [Li95]). A fundamental problem is to learn
the parameters of the mixture given what we believe are random samples from its distribution. In
fact, the study of these types of problems dates back to one of the founders of statistics — Karl
Pearson — who was interested in evolution and believed that a particular species of crab called the
Naples crab was not one but actually two species. He postulated that the data he observed could
be explained as a mixture of two Gaussians [Pe94]. Since his foundational work, these mixture
models have found applications in numerous other areas including physics, geology and genetics.

This problem is a good example of the tension between sample complexity and computational
complexity. The maximum likelihood estimator is known to require few samples to converge, but is
hard to compute [AKO05]. So to find a polynomial time algorithm we would need to rely on different
estimators. Starting with Dasgupta [Da99], a long line of works in theoretical computer science has
sought a polynomial time algorithm for this problem [Da99, DS00, AK05, VW04, AMO05, BV08S].
The existing strategy was clustering, which at the very least needs to assume that the components
are almost entirely disjoint in order to succeed.

In [KMV10, MV10], Kalai, the PI and Valiant gave an approach based on the method of
moments that requires no separation assumptions whatsoever. Our algorithm was the first to
learn the parameters of a mixture of two Gaussians with provably minimal assumptions, thus
resolving this long-standing open question. Our approach was based on reducing an n-dimensional
learning problem to a series of one-dimensional learning problems, and then analyzing the method
of moments by proving properties about the associated system of polynomial equations through
the heat equation. In [MV10] we gave a polynomial time algorithm for any constant number of
components and independently Belkin and Sinha [BS10] gave an algorithm with similar guarantees.

Hsu and Kakade recently gave an algorithm that works for mixtures of many spherical Gaussians,
provided that the means are linearly independent. Their approach is based on tensor decompositions
[HK13]. See also Section 4.1. In [MV10] we gave a lower bound that showed even in one dimension
there are two different mixtures of k Gaussians that are not close on a component by component
basis but as mixtures are exponentially close in statistical distance. This leaves open a fundamental
question in between these upper bounds and lower bounds:

Question 7. Are there algorithms that run in time polynomial in n, 1/€ and k that learn miztures
of k Gaussians to accuracy € provided that the means of the components are linearly independent?

The case where the components are identical seems to be very different, and the above question
needs completely new ideas.



3.2 Research Direction: Tensor Completion

One of the major advances in machine learning in recent years is the development of a broad range
of algorithms for linear inverse problems based on semidefinite programming. The most famous
example is the matrix completion problem where there is an unknown matrix M € R™*™ and we
observe a subset 2 C [n] x [n] of its entries and our goal is to recover M exactly. Candes and Recht
[CRO8] introduced this problem and studied it under various natural assumptions — namely that (a)
M is low rank (b) the singular vectors of M are not aligned with the standard basis vectors (i.e. M
is incoherent) and (c) the observations 2 are distributed uniformly at random. The authors showed
a stunning result: there is a simple convex program that recovers M exactly with high probability
with only Cn'?rlogn observations, where r is the rank of M. The number of observations was
improved in a sequence of works to Cnr logo(l) n [KMO10, CT10, Rell], which is close to the
information theoretic lower bound.
The approach in the above works is to study the following relaxation:

min | X, s.t. X;; = M, ; for all (i,5) € Q

where || X||. is called the nuclear norm and is the sum of the singular values of X. We remark that
the number of non-zero singular values of X is precisely its rank and so the hope is that the nuclear
norm is a good proxy for the rank in much the same way that the /1-norm is a good proxy for the
sparsity in compressed sensing.

The above relaxation turns out to be a semidefinite program (this follows from the dual char-
acterization of the nuclear norm). In fact, various other semidefinite programs play a crucial role
in designing algorithms for other linear inverse problems such as matrix sensing [RFP10], phase
retrieval [CES*13] and sparse principal component analysis [CLMT11]. See also [CRPT12] for a
general framework that captures some of these examples as a special case; following their work, the
general recipe is to define an atomic norm || X| 4 and study conditions under which the solution to

min || X |4 s.t. L;i(X) = Ly(M) for all i € Q

recovers M exactly. Here L; represents a linear function but for our purposes we will think of it as
revealing a particular entry of a matrix or a tensor.

However this is not the end of the story. Consider the tensor completion problem where we
have the same model as before but our observations now come from a low-rank tensor 7' [CRP12].
This extension arises whenever you work with data that has more than two types of attributes.
There has been a considerable amount of work on this problem, but the main difficulty is that for
this problem and many others the natural choice for the atomic norm is itself N P-hard to compute
[Gu03, HM13b]. In such a case we could ask:

Question 8. Can we use the full power of higher levels of the sum-of-squares hierarchy [Pa00, La01]
to design better algorithms for linear inverse problems?

This touches upon an important issue: The more structured the object is that our observations are
coming from, the fewer observations we should need. But it also makes the underlying optimization
problem harder, and it is natural to look to the sum-of-squares hierarchy to understand the allowable
tradeoffs between the sample complexity and the running time. This question is part of a burgeoning
area of research [BR13, CJ13, HM13b, ZWJ14]. To keep the exposition as simple as possible, we will
focus on the fourth-order tensor completion problem (the third-order version is just as interesting,
but there are more technicalities to deal with).

Question 9. How many observations of a low-rank, incoherent tensor T € R"*"*™*™ do we need
in order to be able to fill in the rest of its entries?



The crucial point is that we could always flatten T" to get a low-rank matrix instead as follows:

flat(T) = Y (wi @K g vi) ® (w; @K R ;)
(2

Here a ® g b is the Khatri-Rao product which for n-dimensional vectors a and b results in an
n?-dimensional vector whose entries are the product of entries in a and b. It is easy to see that
if T is incoherent and has rank r then flat(7") inherits these properties. Hence we can complete
T by flattening it and appealing to known results about matrix completion and forgetting entirely
about its tensor structure. The trouble is that this requires too many observations. Let us take
r = O(1) from now on. We would need about n? observations to follow this strategy, even though
in principle it should be possible to complete T' (if we exploit the fact that it is a tensor) using as
few as about n observations.

Question 10. Are there efficient algorithms for fourth-order tensor completion that need only n>—°

observations for some § > 07

In fact, this question has a number of intriguing parallels to well-studied problems in quantum
complexity. We will attempt to minimize the amount of background needed for this discussion,
and give a general idea of the connections. It makes sense to ask an even simpler question: How
many entries do we need to observe to be able to predict the sign of the other entries in T" with
non-trivial advantage? This version of the question has been studied for matrix completion [SSO05]
and if it sounds more like a generalization bound, that’s because it is! The approach in [SS05] is
to bound the Rademacher complexity to prove a generalization bound, and this pattern gives us a
new way to look for relaxations that work for tensor completion: let’s look for ones where we can
bound their Rademacher complexity.

In particular, it comes down to a question about random matrices: Suppose M has s non-zero
entries that are chosen uniformly at random and are equally likely to be +1 or —1. Then how large
(as a function of s) is the maximum of u” Mwv over unit vectors v and v? It is easy to show that
the answer is roughly max(1, y/s/n). It turns out that we need this bound to be smaller than s/n
in order to get a non-trivial generalization bound, and this happens when s is about n [SS05]. In
tensor completion we are faced with a similar problem: Suppose T is a tensor that has s non-zero
entries which are chosen in the same manner as above. Again we are interested in a particular
norm of 7" which in this case is the maximum over unit vectors u, v, w and = of T'(u, v, w, z). This
is called the injective norm and is denoted by ||7'||in;-

Question 11. How large does s need to be before we can algorithmically certify that ||T'||in; is at
most s/n??

Again, we could always prove an upper bound by flattening 7" and computing the spectral norm
of flat(T) which is at most s/n? once s is at about n?. But the point is that if we restrict the
maximization of T'(u,v,w,x) to be over spread out vectors then the maximum should be about
s/n? even when s is about n. If we had a relaxation that could certify this, it would give us
an estimator that could predict the entries of a fourth-order tensor 1" from a linear instead of a
quadratic number of observations.

In fact, understanding the approximability of the injective norm has been a central question
in quantum complexity precisely because it is related to the problem of deciding whether or not
a given density matrix is close to the set of separable states (see [Gu03, HM13b] and references
therein). Brandao, Chrisandl and Yard recently gave an exciting quasi-polynomial time algorithm
for the quantum separability problem. It is one of the rare examples of an algorithm that makes use
of higher levels of the sum-of-squares hierarchy and has led to progress on related questions such
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as approximating the injective norm itself (within an additive term) [BKS14a] and new algorithms
for dictionary learning [BKS14b]. Barak, Brandao, Harrow, Kelner, Steurer and Zhou also gave an
algorithm for certifying non-trivial upper bounds on the injective norm of random tensors [BFH'12]
but here we need the tensors to be sparse since s is what governs how many observations we need
in order to solve tensor completion.

There seem to be many potential connections between hierarchies and learning with interesting
directions going both ways. Here we gave an example where hierarchies may provide new algorithms
for various learning problems (not just linear inverse problems). Moreover this connection could be
fruitful in the other direction too where learning problems may provide examples of average-case
problems that fool the sum-of-squares hierarchy. This section is based on ongoing discussions with
Aram Harrow.

4 Hybrids of Worst-Case and Average-Case

In Section 2 we considered the prospect of making new structural assumptions to get around
known intractability results. A complementary approach is to instead assume that an adversary
has imprecise control over the instances he gives us, as in the smoothed analysis model [ST04, ST09].
In Section 4.1, we describe our work on analyzing tensor decompositions in this setting as well as
some of the applications of this result in learning. In future work, we will explore the prospect
of using semi-random models to weaken the standard distributional assumptions. The goal is to
extend existing algorithms to this challenging setting to get more robust algorithms that perform
better in practice (Section 4.2).

4.1 Prior Work: Smoothed Analysis of Tensor Decompositions

In factor analysis the goal is to take many variables and explain them away using fewer unobserved
variables, called factors. It was introduced in a pioneering study by psychologist Charles Spearman,
who used it to test his theory that there are fundamentally two types of intelligence — verbal and
mathematical [Sp04]. This study has had a deep influence on modern psychology. However there is
a mathematical complication that is called the rotation problem that for our purposes comes from
the fact that a matrix decomposition M = Zil a; ® b; is unique only if we add rather restrictive
assumptions such as requiring the factors {a;}; and {b;}; to be orthonormal.

Tensor decompositions were first explored in the psychometrics community [Ha70, Kr77] because
they are unique under much weaker conditions and offer a solution to the rotation problem. In
particular, given a tensor T = Zf; 16; @ by ® ¢; it suffices for the factors {a;}i, {b;}; and {c;};
to be linearly independent in order to ensure that the decomposition is unique up to reordering
and rescaling. In such a case, there are a number of algorithms to construct this decomposition
[Ha70] and this basic fact has been rediscovered many times. Tensor decompositions have found
numerous applications in statistics [AMRO09] and in learning latent variable models on phylogenetic
trees [MRO05], HMMs [MRO05], topic models [AHK12, AFH"12], mixture models [HK13] and also
yield algorithms for community detection [AGH"13]. Throughout this section let n denote the
dimension of the factors.

What if we want to design algorithms that work in the overcomplete setting where R is much
larger than n? The standard approach is to do so by flattening a higher order tensor T' (whose
factors are a;, b;, ¢;,d;, e; and f;):

M:o

flat(T <aZ®KRb) (Ci®KRdi)®(ei®KRfi)

=1 factor factor factor

11



Here @k is the Khatri-Rao product that takes the tensor product of two n-dimensional vectors
and flattens the result to get an n2-dimensional vector. Hence flattening results in an n? x n? x n?
tensor (see also Section 3.2). The key point is that the set of vectors {a; ®xr b;} can be linearly
independent even if R = n? and consequently the Khatri-Rao product can be used to take algorithms
that work with third-order tensors and boost them to work with flattened higher-order tensors to get
algorithms that work in the overcomplete case [AMR09, BCV14]. Recently, Bhaskara, Charikar, the
PI and Vijayaraghavan [BCM'14] introduced a smoothed analysis model to study these problems
and showed that in this model boosting is extremely effective. This paved the way for getting new
algorithms for learning mixtures of axis-aligned Gaussians and multi-view models that work when
the number of components is any fixed polynomial in the dimension of the problem [BCM™14].
See also prior work of [GVX14] that studies overcomplete independent component analysis, and
concurrent work of [ABGT14] that presents alternate approaches. The distinction is in [BCM*14]
we establish that the properties of tensors we need hold in the smoothed analysis model with
exponentially small failure probability.

4.2 Research Direction: Semi-Random Models for Matrix Completion

The usual recipe for designing algorithms with provable guarantees is to make an assumption about
the structure of the solution (e.g. incoherence) as well as a distributional assumption about how
our observations are generated. Are these latter assumptions reasonable? There is a serious danger
that algorithms might work because they are over-exploiting statistical properties of the instances
they are given. Algorithms that work on a particular type of distribution may fail completely if we
slightly change the distribution, as we expect to be the case when we take a successful algorithm
from one domain and use it in another.

Let us illustrate these issues by continuing our discussion of the matrix completion problem.
The original motivation for studying it comes from collaborative filtering. In this problem, there is
an unknown matrix M € R"*" that describes user preferences, and we assume that it is (approxi-
mately) low-rank and incoherent (Section 3.2). These are defensible assumptions and make sense.
But we also assume that our observations € C [m] x [n] of M are chosen uniformly at random.

In contrast, suppose we adopt another model (whose inspiration comes from the work on semi-
random models for graph partitioning [FKO1]). Suppose € is chosen uniformly at random, but
what we actually observe is a superset 2 O Q chosen by an adversary after the fact. Intuitively,
this should make the problem easier and not harder. Surprisingly all of the algorithms based on
alternating minimization break, but those based on semidefinite programming do not! We remark
that alternating minimization is still the algorithm of choice in large-scale applications, because it
is faster and requires less space; making it work in this more challenging setting could lead to more
robust but still practical algorithms for matrix completion.

Question 12. Are there variants of alternating minimization for matriz completion that provably
work in semi-random models?

This is just one possible problem for which it makes sense to revisit existing algorithms from the
perspective of semi-random models. We could do the same for learning mixtures of Gaussians
(Section 3.1) and some other distribution learning problems, but the natural way to adapt semi-
random models is considerably different and we omit the details.

There is an interesting parallel between the above questions and those that have been studied
in the context of graph partitioning. Indeed there was a sequence of works studying the stochastic
block model where the goal is to partition a random graph and recover the underlying clustering from
which it was generated [BCL*84, Bo85, DF86, JS93, Mc01]. Feige and Kilian [FKO01] introduced
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a semi-random model where an adversary is allowed to add edges inside clusters and delete edges
crossing between clusters. This breaks previous algorithms. Nevertheless, Feige and Kilian [FK01]
gave a semidefinite program that succeeds in this more challenging setting. See also recent work
[MMV12, MMV14] on related problems, albeit in a different model.

In fact, there is by now a standard recipe for designing algorithms that work in the semi-random
model. We start with a semidefinite program and the main technical step is in showing that with
high probability there is a solution to the dual program that certifies the true solution is optimal.
But do we really need to solve a semidefinite program to get these type of robustness guarantees?

Question 13. Are there algorithms for solving semi-random clustering problems that do not use
semidefinite programming?

In order to get the best of both worlds — algorithms that are robust and scale up to very large
problems — it is natural to look for qualitatively new types of algorithms that also work in the
semi-random setting. These types of algorithms could have considerable practical impact, because
they could give us new ways to do things we thought we already knew how to do.

5 Broader Impact

Research: Our work has already been successful at bringing researchers in theory and machine
learning closer together and has resulted in a number of joint workshops and meetings where ideas
can cross freely over traditional boundaries that separate the fields. We are starting to make lasting
inroads and I expect that this research program along with efforts of my collaborators will develop
into a central area of research in both communities.

I am fully committed to popularizing the algorithmic perspective in other fields, not just machine
learning but also in statistics, signal processing and applied mathematics more broadly. I believe
that models like smoothed analysis and semi-random models that interpolate between worst-case
and average-case analysis, can be applied even more broadly than they currently are. Conversely, in
many of the applications in machine learning there are fundamentally different sorts of assumptions
that are made and that we can learn from and use to revisit areas of theory that have been stagnant.
Ultimately I hope that these projects will help theorists and practitioners find common ground, so
that there will be significant interactions and diffusion of ideas between them.

Dissemination: A critical component of this research agenda is in disseminating results in
other communities and building bridges between theory, machine learning, statistics and signal
processing. I have organized many events that bring researchers from disparate areas together,
and participated in many more. In Summer 2012, I co-organized a workshop with Sanjeev Arora
and Moses Charikar called “Provable Bounds in Machine Learning” that had well over a hundred
participants and we made all of these talks freely available online. In Fall 2012, T helped Sanjeev
Arora design a new graduate course called “Is Machine Learning Easy?” which later served as a
starting point when I designed and taught my own graduate course at MIT in Fall 2013. I gave an
invited tutorial at UAI 2013 and co-organized a workshop at NIPS 2013 on topic modeling with
experts in the field. This summer I was a long term visitor at Centre de Recerca Matematica, and
I gave an invited talk at Curves and Surfaces 2014, which is a bi-annual meeting organized around
signal processing and approximation theory.

In the near future, I plan on writing a mini-workshop proposal with some of the experts on the
practical aspects of dictionary learning — Karin Schnass, Remi Gribonval and Martin Kleinsteuber
— where we will bring together researchers from different fields to review recent progress and set new
directions going forward. I will also be giving a summer school at MADALGO with Amr Ahmed,
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Mikhail Belkin and Stefanie Jegelka. I also plan to considerably update the graduate seminar I
taught in Fall 2013 and teach it again in Spring 2015, which will give me the opportunity to expand
the monograph I wrote into a textbook. I am currently in talks with Cambridge University Press
about publishing it. In addition, I plan to write a survey aimed at dispelling some of the common
misconceptions of computer scientists about statistics. I believe that there are subtle mismatches
in the definitions — arising from the difference between asymptotic and effective bounds.

Finally, I am a firm believer that the best way to disseminate results outside of theory is to
actually test out your algorithms and work with researchers in the field to get new insights about
real-world problems. Some of these attempts to export theory have been successful — most notably
our work on topic modeling where we gave algorithms that outperformed state-of-the-art toolkits
— and others have instead inspired me in the other direction, where often I find myself surprised
at how well simple heuristics like alternating minimization and Gibbs sampling work and I instead
set out to analyze them. I have worked with a number of undergraduates already, and a handful
have gone on to graduate school to study machine learning, and I hope that they will take with
them some of the perspectives of theory that we discussed and thought about together.

Outreach: I have participated in a number of programs that are specifically designed to en-
courage students from underrepresented groups to pursue computer science, and I plan on becoming
involved in similar such programs at MIT. Last summer, I taught a three-week intensive course
called “The Math Behind the Machine” in the NJ Governor’s School held in Rutgers, where the
audience consisted of hand-selected high school students from across the state who had just finished
their junior year. These students started applying to colleges just afterwards, so it is was an ideal
time to introduce them to theoretical computer science and put it on their minds. This program
encourages participation from underrepresented groups in particular, and I had many such students
in my class. Programs like this give them a unique opportunity to be exposed to material that they
would otherwise would not have access to.

In previous summers, I also gave lectures to undergraduate students as part of Rajiv Ghandi’s
summer school held in Princeton. This program is unlike many of its peers in that it targets only
students from institutions where there is no opportunity to do research at the undergraduate level.
The goal is to introduce these students to research level topics and encourage them to apply to
graduate school by giving them a taste of what is out there beyond their classwork. This summer
I will be involved in several such outreach programs; in particular I will be a speaker and a judge
(for final projects) in SPUR/RSI. And in the Fall, I will speak at the opening dinner for the Society
of Women Engineers (SWE).

6 Educational Plan

6.1 Mentoring

I have already had the opportunity to collaborate with several graduate and undergraduate students
during my postdoc, and I fully believe that training the next wave of students and equipping them
with the right tools is an integral part of the success of this research plan. I plan to take on a
student in the fall, and have been working with several students who are currently supervised by
other faculty members. In addition I am looking forward to further interactions with students
outside of theory too. In the past, such projects seem to go in different directions than I would
normally think of exploring, and are rewarding in a unique way. Finally, I am eager to take on
undergraduate students, and I believe it is my responsibility (and privilege) to give motivated
students a glimpse of how exciting research can be! When I was an undergraduate at Cornell,
getting the chance to work directly with Eva Tardos was the single biggest reason that I decided
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to switch fields and go on to graduate school in theoretical computer science. It added a level of
excitement that was something else entirely from my experiences doing coursework.

6.2 Course Development

In Fall 2013, I developed and taught a new graduate course titled “Algorithmic Aspects of Ma-
chine Learning” which covered numerous topics in this proposal and many more and had over sixty
enrolled students from a wide range of backgrounds. Much of the material in this area is inter-
disciplinary and draws liberally from theoretical computer science, mathematics, optimization and
machine learning and the course was aimed at equipping students with the right tools from these
interconnected areas. I wrote a monograph that is freely available on my webpage, which in the
meantime has been used at a number of universities as a source for independent reading projects
(MIT, Cornell, UT Austin) as well as subject material for qualifying exams (MIT, Princeton). I
plan to considerably update this course and I will offer it again in Spring 2015. This will also give
me the opportunity to expand my monograph into a textbook, although I will keep it online.

Ultimately, I plan to develop a new undergraduate course on machine learning that emphasizes
the theoretical foundations such as boosting, experts, bandits, Markov decision processes, PAC
learning and property testing. In my experience, some of our best undergraduates — particularly
those majoring in 18C": Mathematics with Computer Science — are theory-minded and could greatly
benefit from a version of the standard undergraduate course that fits better with their mathematical
training. These students often go on to heavily use machine learning in industry, and such a course
would much better equip them to not just be users of machine learning but also to be able to think
critically about it and make different sorts of contributions.

7 Results of Prior Support

From September 2011 to August 2013 I was supported by an NSF Computing and Innovation
Fellowship (CIF-D-013, CIF-E-013) while I was a postdoc at the Institute for Advanced Study.
The grant covered my salary, health insurance and travel expenses and resulted in nine publica-
tions which were presented at top conferences, and numerous other prestigious venues. This work
covers a broad range of topics including nonnegative matrix factorization ([AGK™12], STOC 2012,
[Mo13], SODA 2013), topic modeling ([AGM12], FOCS 2012, [AGH"13], ICML 2013), independent
component analysis ([AGM™12], NIPS 2012), extended formulations ([BM13], STOC 2013), robust
statistics ([HM13b], COLT 2013), combinatorics ([AMS12], STOC 2012) and population recovery
([MS13], FOCS 2013), and most of it was described at length in the body of the proposal.

Intellectual Merit The questions that I worked on while supported by an NSF CI Fellowship
are of widespread importance. Our work led to new algorithms for basic problems in machine
learning, some of which outperform the state-of-the-art. And yet these algorithms come with
provable guarantees and hence we know when and why they work, something that is often lacking
for many popular machine learning approaches.

Broader Impact Our work has already been successful at bringing researchers in theory and
machine learning closer together and there has been considerable follow-up from both communities.
I gave a number of invited tutorials and organized cross-disciplinary workshops (see Section 5).
These have been an excellent opportunity to disseminate the viewpoints of theoretical computer
science to a broader audience.
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